

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 4th Semester Examination, 2024

CEMACOR10T-CHEMISTRY (CC10)

ORGANIC CHEMISTRY-IV

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any four questions taking one from each unit

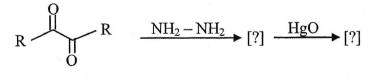
Unit-I

- 1. (a) Identify the products A, B and C in the following sequence of transformations. Suggest a mechanism for the conversion of B to C.
 - PhCHO $\xrightarrow{\text{MeNO}_2}$ A $\xrightarrow{\text{LiAlH}_4}$ B $\xrightarrow{\text{HNO}_2}$ C
 - (b) Predict the product(s) of the following reaction with plausible mechanism.
- $1\frac{1}{2}$

 $1\frac{1}{2}$

2

3


Me SO₂N(Me)NO Aqueous KOH
$$\Delta$$

- (c) State the action of $NaNO_2$ / HCl on (only the product):
 - (i) N-methylaniline (ii) N, N-dimethylaniline and (iii) benzylamine
- 2. (a) Carry out the following conversion:
 - $\begin{array}{c}
 Br \\
 \hline
 O \\
 \hline
 COOH
 \end{array}$
 - (b) Illustrate the use of diazomethane for the preparation of pyrazole and conversion of cyclopentanone to cyclohexanone.
 - (c) Write down the product in the following scheme.

2

2

2

Unit-II

3. (a) "In the Arndt-Eistert synthesis two equivalent of diazomethane is used."

— Explain the statement showing mechanism of the reaction.

CBCS/B.Sc./Hons./4th Sem./CEMACOR10T/2024

(b) Predict the product of the following reaction:

(c) Complete the following reactions and give reasons for your answer:

 $1\frac{1}{2} \times 2 = 3$

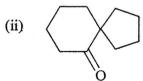
3

(i)
$$H_3C$$
 OH H^{\oplus} OH CH_3

(ii)
$$Ph$$
 CH_3
 Ph
 H_3C
 OH
 Ph
 H^{\oplus}

- 4. (a) Two isomeric α-halo ketones A and B on treatment with NaOMe (separately) gave the same product PhCH₂CH₂CO₂Me. Identify A and B.
 - (b) Predict the product (with proper stereochemistry) in the following reaction with suitable mechanistic explanation.

(c) Show that Hofmann, Curtius and Lossen reactions proceed through a common intermediate. Give proper evidence in favour of your answer.


3

2

3

Unit-III

5. (a) Analyse the following molecules retro synthetically and suggest plausible $3\times 2=6$ synthetic route to them. (any *two*)

(b) Explain the terms "functional group interconversion" and 'illogical nucleophile' with suitable examples.

2+2

CBCS/B.Sc./Hons./4th Sem./CEMACOR10T/2024

6. (a) Write down the synthetic equivalents of the following synthons.

3

- (i) CO₂H
- (ii) CHCH2OH
- (iii) $Ph \bar{C} = O$
- (b) Predict the major diastereomeric product when S-3-bromo-2-butanone is treated with sodium borohydride.
- 3
- (c) Illustrate the use of acyloin condensation for the synthesis of large rings. Does the method require the high dilution technique?
- 2

(d) Give the reagents for the following transformations.

2

(ii)
$$NO_2$$
 NO_2 CH_2OH

Unit-IV

- 7. (a) Consider the following carbonyl compounds. Suggest the correct increasing order of C = O stretching frequency.
- 3

- (b) Distinguish the following pair of compounds on the basis of their IR 2+2+2 spectroscopic data:
 - (i) Acetone and benzophenone
 - (ii) Salicylic acid and o-chloro benzoic acid
 - (iii) Phenyl acetate and methyl benzoate.
- (c) What will be the change in ¹H-NMR spectrum of pure ethanol by the addition of D₂O?
- (d) How do you study the progress of the following transformations using IR spectroscopy?

$$CO_2H$$
 $COC1$ $CONH_2$

- (e) Comment on the effect of polarity of solvent on $\pi \to \pi^*$ and $n \to \pi^*$ transitions in UV spectroscopy.
- (f) Mention one solvent, other than CDCl₃, that acts as NMR solvent.
- 1

2

2

8. (a) An organic compound with molecular formula C₆H₁₂O gives positive iodoform test. Its UV, IR and ¹H-NMR data are given below:

3+1

UV: λ_{max} 282 nm , ϵ_{max} 22

IR: $v_{\text{max}} 1710 \,\text{cm}^{-1}$

¹H NMR: δ 2.1 (3H, s) and 1.1(9H, s)

Deduce the structure of the compound with proper explanation.

Explain the spectroscopic data.

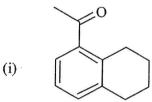
(b) Write down the structure of the compound C₅H₁₁Cl which shows two singlets in its ¹H NMR spectrum. Predict the chemical shift.

2

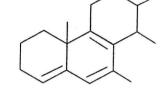
(c) Toluene is oxidized to benzaldehyde. What changes would you expect in PMR spectral feature for the product with respect to that of the starting material?

2

2


(d) "The nature of H-bonding present in a molecule can be identified by IR spectroscopy." — Explain with examples.

2


(e) The stretching absorption maxima for C-H and C-D are approximately $2900~{\rm cm}^{-1}$ and 2200 cm⁻¹ respectively. — Explain why.

(f) Calculate λ_{max} values for the following compounds using Woodward Fieser rule.

2+2

(ii)

