# WEST BENGAL STATE UNIVERSITY 

B.Sc. Honours Part-III Examinations, 2017

## Mathematics-Honours

## PAPER-MTMA-VII

Time Allotted: 4 Hours
Full Marks: 100

> The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

## Group-A

(VECTOR ANALYSIS-II)

## Answer any one question from the following.

$10 \times 1=10$

1. (a) Find the constants $a, b, c$ so that the vector
$\vec{V}=(x+2 y+a z) \vec{i}+(b x-3 y-z) \vec{j}+(4 x+c y+2 z) \vec{k}$ is irrotational and then assuming $\vec{V}=\vec{\nabla} \phi$, obtain $\phi$.
(b) Evaluate $\oint_{\Gamma}[(\cos x \sin y-x y) d x+\sin x \cos y d y]$ by using Green's theorem where $\Gamma$ is the circle $x^{2}+y^{2}=1$ described in the positive sense.
2. (a) Prove that $\int_{V} \vec{\nabla} \phi d \nu=\int_{s} \phi \hat{n} d s$. In particular, show that $\int_{s} \hat{n} d s=\overrightarrow{0}$.
(b) State Gauss divergence theorem. Use the theorem to show that $\iint_{S} \vec{r} . d \vec{s}=3 \mathrm{~V}$, 5 where $V$ is the volume enclosed by the surface $S$ and $\vec{r}$ has its usual meaning.

## Group-B

(ANALYTICAL STATICS)

## Answer any five questions from the following.

3. A small bead $P$ can slide on a smooth elliptic wire. It is attracted towards the foci $S$ and $H$ by forces proportional to $(S P)^{m}$ and $(H P)^{n}$ respectively. Find the position of equilibrium.

## B.Sc./Part-III/Hons./MTMA-VII/2017

4. Define Poinsots central axis of a system of forces acting on a body and show that the central axis is unique.
5. A solid frustum of paraboloid of revolution of height $h$ and latus rectum 4a, rests with its vertex on the vertex of another paraboloid of revolution whose latus rectum is $4 b$. Show the equilibrium is stable if $h<\frac{3 a b}{a+b}$.
6. A telegraph wire is made of a given material, and such a length $l$ is stretched between two posts, distant $d$ apart and of same length, as will produce the least possible tension at the posts. Show that $l=\frac{d}{\lambda} \sinh \lambda$, where $\lambda$ is given by the equation $\lambda \tanh \lambda=1$.
7. State and prove the 'principle of virtual work' for any system of coplanar forces acting on a rigid body. If the sum of the virtual works of a system is zero for all displacement, translatory as well as rotatory, then show that the forces are in equilibrium.
8. Two forces act, one along the line $y=0, z=0$ and the other along the line $x=0, z=c$. As the forces vary, show that the surface generated by the axis of their equivalent wrench is $\left(x^{2}+y^{2}\right) z=c y^{2}$.
9. A sphere of weight $W$ and radius $r$ lies within a fixed spherical shell of radius $R$, and a particle of weight $w$ is attached to its highest point. Show that the equilibrium is stable if

$$
W \geq \frac{R-2 r}{r} w .
$$

10. Two uniform similar rods of same material PQ and QT of lengths $2 l$ and $2 L$ respectively are rigidly united at Q and suspended freely from P . If they rest inclined at an angle $\alpha$ and $\beta$ respectively to the vertical, prove that $\left(l^{2}+2 l L\right) \sin \alpha=L^{2} \sin \beta$.
11. Explain the astatic equilibrium of a system of coplanar forces acting at different points of a body and obtain the astatic centre.

## B.Sc./Part-III/Hons./MTMA-VII/2017

4. Define Poinsots central axis of a system of forces acting on a body and show that the central axis is unique.
5. A solid frustum of paraboloid of revolution of height $h$ and latus rectum 4a, rests with its vertex on the vertex of another paraboloid of revolution whose latus rectum is $4 b$. Show the equilibrium is stable if $h<\frac{3 a b}{a+b}$.
6. A telegraph wire is made of a given material, and such a length $l$ is stretched between two posts, distant $d$ apart and of same length, as will produce the least possible tension at the posts. Show that $l=\frac{d}{\lambda} \sinh \lambda$, where $\lambda$ is given by the equation $\lambda \tanh \lambda=1$.
7. State and prove the 'principle of virtual work' for any system of coplanar forces acting on a rigid body. If the sum of the virtual works of a system is zero for all displacement, translatory as well as rotatory, then show that the forces are in equilibrium.
8. Two forces act, one along the line $y=0, z=0$ and the other along the line $x=0, z=c$. As the forces vary, show that the surface generated by the axis of their equivalent wrench is $\left(x^{2}+y^{2}\right) z=c y^{2}$.
9. A sphere of weight $W$ and radius $r$ lies within a fixed spherical shell of radius $R$, and a particle of weight $w$ is attached to its highest point. Show that the equilibrium is stable if

$$
W \geq \frac{R-2 r}{r} w .
$$

10. Two uniform similar rods of same material PQ and QT of lengths $2 l$ and $2 L$ respectively are rigidly united at Q and suspended freely from P . If they rest inclined at an angle $\alpha$ and $\beta$ respectively to the vertical, prove that $\left(l^{2}+2 l L\right) \sin \alpha=L^{2} \sin \beta$.
11. Explain the astatic equilibrium of a system of coplanar forces acting at different points of a body and obtain the astatic centre.

## B.Sc./Part-III/Hons./MTMA-VII/2017

(b) A vertical circular cylinder of height $2 h$ and radius $r$ closed at the top, is just filled by equal volumes of two liquids of density $\rho$ and $\sigma$. Show that if the axis be gradually inclined to the vertical, the pressure at the lowest point of the base will never exceed

$$
g(\rho+\sigma)\left(r^{2}+h^{2}\right)^{\frac{1}{2}}
$$

16. (a) Prove that the necessary and sufficient condition for equilibrium of a fluid under the action of a force whose components are $X, Y, Z$ along the coordinate axes is that

$$
X\left(\frac{\partial Y}{\partial z}-\frac{\partial Z}{\partial y}\right)+Y\left(\frac{\partial Z}{\partial x}-\frac{\partial X}{\partial z}\right)+Z\left(\frac{\partial X}{\partial y}-\frac{\partial Y}{\partial x}\right)=0
$$

(b) A quadrant of a circle is immersed in a liquid with a bounding radius in the surface. Find the position of its centre of pressure.

## SECTION-II

17. (a) A hemispherical surface of radius $a$ is immersed in a liquid of density $\rho$ with its centre at a depth $h$ and its base inclined at an angle $\theta$ to the horizontal. Find the resultant thrust on the curved surface.
(b) A liquid fills the lower half of a circular tube of radius $a$ in a vertical plane. If the tube is now rotated about the vertical diameter with uniform angular velocity $\omega$ such that the liquid is about to separate in two parts, show that $\omega=\sqrt{\frac{2 g}{a}}$.
18. (3) A cone of density $\rho$ whose height is $h$ and the radius of whose base is $a$ floating with its axis vertical and vertex upwards in liquid of density $\sigma$. Prove that the equilibrium is stable if $\rho<\sigma\left(1-\cos ^{6} \alpha\right)$.
(b) Prove that if the temperature in the atmosphere falls uniformly with the height ascended, the height of a station above the sea level is given by
$z=a\left\{1-\left(\frac{h}{h_{0}}\right)^{m}\right\}$, where $h, h_{0}$, are the reading of the barometer at station and sea level respectively and $a, m$ are constants.
