



# WEST BENGAL STATE UNIVERSITY B.Sc. Honours PART-III Examinations, 2017

## MATHEMATICS-HONOURS

## PAPER-MTMA-V

Time Allotted: 4 Hours

Full Marks: 100

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

## Group-A

#### (Marks-70)

# Answer Question No. 1 and any five questions from the rest.

1. Answer any *five* questions from the following:

 $3 \times 5 = 15$ 

- (a) Let A be an uncountable subset of R such that A<sup>d</sup> (the derived set of A) is compact in R. Does it follow that A is bounded in R? Justify your answer.
- (b) Find the radius of convergence of the power series

$$x + \frac{x^2}{2^2} + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$$

(c) Examine if the series  $\sum_{n=0}^{\infty} \frac{x^4}{(1+x^4)^n}$  is uniformly convergent on [0, 1].

(d) Defining 
$$\log_e x = \int_1^x \frac{dt}{t}$$
,  $(x > 0)$ 

Prove that  $\frac{x}{1+x} < \log_e(1+x) < x, (x > 0).$ 

3079

Turn Over

- (e) If  $f : [a, b] \to \mathbb{R}$  be Riemann integrable in [a, b], prove that  $F(x) = \int_{-\infty}^{x} f(t) dt$ ;  $a \le x \le b$ ; is continuous in [a, b].
- (f) Find the intrinsic equation of  $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ , when arc length is measured from a cusp on the x-axis.
- (g) Prove that if  $\int_{a}^{\infty} f$  be absolutely convergent, then f is convergent.
- (h) Prove or disprove: The trigonometric series  $\sum_{n} \frac{\sin nx}{n^2}$  represents a Fourier series in  $[-\pi, \pi]$ .
- (i) Evaluate  $\iint_R xy(x^2 + y^2) dxdy$  over R : [0, a; 0, b].
- 2. (a) If every infinite subset of  $S(\subset \mathbb{R})$  has a limit point in S, prove that S is compact.

5

3

3

3+3

3

4

- (b) If A and B are two open set in  $\mathbb{R}$  such that  $A \cap B$  is compact. Prove that  $A \cap B = \Phi$ .
- (c) Prove or disprove: The range of any convergent sequence in ℝ is a compact set.
- 3. (a) Let for each n∈N, f<sub>n</sub>: [a, b]→R be Riemann integrable on [a, b] and the sequence {f<sub>n</sub>}<sub>n</sub> converges uniformly to f on [a, b]. Show that f is Riemann integrable on [a, b], also show that lim ∫ f<sub>n</sub>dx = ∫ [lim f<sub>n</sub>]dx.
  - (b) Show that the series  $\sum_{n=1}^{\infty} \frac{n^4 + 1}{n^7 + 5} \left(\frac{x}{3}\right)^n$  is uniformly convergent on [-3, 3].
  - (c) Prove, with proper justification, that  $\lim_{x \to 0} \sum_{n=2}^{\infty} \frac{\cos nx}{n(n+1)} = \frac{1}{2}$ .
- 4. (a) If  $\{f_n\}_n$  is a sequence of real valued continuous functions defined on a closed set  $D(\subset \mathbb{R})$  converging uniformly on D, then show that

 $\lim_{n\to\infty}\lim_{x\to a}f_n(x)=\lim_{x\to a}\lim_{n\to\infty}f_n(x).$ 

- (b) Show that the sequence  $\{f_n(x)\}_n$  where  $f_n(x) = \frac{x}{1+nx^2}$ ;  $0 \le x \le 1$  converges uniformly to the limit function f(x) in [0, 1] and prove that  $f'(x) = \lim_{n \to \infty} f'_n(x)$  is true when  $x \ne 0$  but is not true when x = 0.
- (c) Let  $\rho = \overline{\lim_{n \to \infty} n} \sqrt{|a_n|}$ ,  $a_n \in \mathbb{R}$  for all *n*. Prove that the power series  $\sum_{n=1}^{\infty} a_n x^n$  is everywhere convergent if  $\rho = 0$ , but the series nowhere convergent if  $\rho = \infty$ .
- 5. (a) Establish the following relation between the Beta and Gamma function:  $B(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}; m, n > 0.$ 
  - (b) By power series expansion of  $(1-x^2)^{-\frac{1}{2}}$ , derive the power series of  $\sin^{-1}x$ . Hence show that

 $\frac{\pi}{2} = 1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{1}{7} + \dots$ 

(c) Show with proper justification, that

$$\int_0^\infty e^{-x^2} \cos \alpha \, x \, dx = \frac{\sqrt{\pi}}{2} e^{-\frac{\alpha^2}{4}}, \text{ for all real } \alpha.$$

- 6. (a) Let f: [a, b]→R be a bounded function. Let S be the set of all points of discontinuity of f. If S is a finite set, show that f is Riemann integrable on [a, b].
  - (b) Let f be bounded and integrable on [a, b] and there exist a function F such that F'(x) = f(x) for all  $x \in [a, b]$ . Prove that  $\int_{a}^{b} f(x) dx = F(b) F(a)$ .
  - (c) Define primitive of a function. Give an example of a Riemann integrable function without any primitive.
- 7. (a) Let f: [a, b]→ R be a bounded function and M and m respectively be the lub and glb of f in [a, b]. Let P be a partition over [a, b] with ||P|| < δ and Q be a refinement of P having k more points of division than that of P. Prove that U(Q, f) ≤ U(P, f) ≤ U(Q, f)+(M-m)δk.</li>

fun Over

4

3

4

4

3

5

4

2

(b) Let  $f: [0, 1] \rightarrow \mathbb{R}$  defined by

 $f(x) = \begin{cases} 1, \text{ if } x \text{ rational} \\ 0, \text{ if } x \text{ irrational} \end{cases}$ 

Examine whether f is Riemann integrable over [0, 1] or not.

(c) Prove that 
$$\frac{\pi^3}{24\sqrt{2}} < \int_0^{\pi_2} \frac{x^2}{\sin x + \cos x} dx < \frac{\pi^3}{24}$$
.

8. (a) The function  $f: [a, b] \rightarrow R$  obeys Lipschitz's condition on [a, b]. Prove that f is of bounded variation. Is the converse True? Support your answer.

3

4

4

4

3

3

3

(b) Let  $f, g: [0, 1] \rightarrow R$  defined by

$$f(x) = \begin{cases} x^3 \sin \frac{1}{x^2}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
$$g(x) = 3x^2 + \cos x.$$

Examine whether the curve  $\gamma = (f, g)$  is rectifiable.

- (c) Using Lagrange's method find the points on the ellipse  $\frac{x^2}{4} + \frac{y^2}{9} = 1$  whose distance from the line 3x + y = 9 are least and greatest.
- 9. (a) State and prove Taylor's Theorem for a real valued function of two 1+4 variables.
  - (b) If  $f(x, y) = \sin \pi x + \cos \pi y$ , use Mean-value theorem to express

 $f\left(\frac{1}{2},0\right) - f\left(0,-\frac{1}{2}\right)$  in terms of first order partial derivative of f and deduce

that there exist  $\theta$  in (0, 1) such that  $\frac{4}{\pi} = \cos \frac{\pi}{2} \theta + \sin \frac{\pi}{2} (1-\theta)$ .

(c) Prove or disprove: A real valued function defined on an open set G in  $\mathbb{R}^2$  having both first order partial derivative zero at some point  $z_0$  in G has a local extremum at the point  $z_0$ .

- 10.(a) Show that the function f(x) = |x| satisfies Dirichlet's conditions in  $[-\pi, \pi]$ . Obtain the Fourier series of f(x) in  $[-\pi, \pi]$  and show that  $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ 
  - (b) Find the value of  $\iiint_E \frac{dx \, dy \, dz}{(1+x+y+z)^3}$ , where *E* is the tetrahedron bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1.
  - (c) Find the area of surface of the cylinder  $x^2 + y^2 = 4a^2$  above the xy plane and bounded by the planes y = 0, z = a, y = z.

#### Group-B

#### [Marks-15]

| Answer any | one question | from the following. | 15×1 | = 15 |
|------------|--------------|---------------------|------|------|
|------------|--------------|---------------------|------|------|

11.(a) Let X be the set of all real valued continuous functions on [0, 1] and

$$d: X \times X \to \mathbb{R}$$
 be defined as  $d(x, y) = \int_{0}^{1} |x(t) - y(t)| dt$ , for  $x, y \in X$ .

Prove that d defines a metric on X.

Also show that for each  $n \in N$ , the function  $x_n : [0, 1] \to \mathbb{R}$  defined by

$$x_{n}(t) = \begin{cases} n, & \text{if } 0 \le t \le \frac{1}{n^{2}} \\ \frac{1}{\sqrt{t}}, & \text{if } \frac{1}{n^{2}} < t \le 1 \end{cases}$$

belongs to X and  $\{x_n\}$  is a Cauchy sequence in (X, d).

- (b) If  $\{x_n\}$  is a sequence in a metric space (X, d) and  $x \in X$ . Prove that x is a cluster point of  $\{x_n\}$  if and only if there exists a subsequence of  $\{x_n\}$  converging to x.
- (c) Prove that in a metric space (X, d) every open ball is an open set. Is the converse true? Support your answer.

3079

Turn Over

5

3

3

4 + 3

4

- 12.(a) Prove that the function  $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$  defined by  $d(\alpha, \beta) = |x_1 - y_1| + |x_2 - y_2|$ , for  $\alpha, \beta \in \mathbb{R}^2$ where  $\alpha = (x_1, x_2), \beta = (y_1, y_2)$  defines a metric on  $\mathbb{R}^2$ .
  - (b) Prove that in a complete metric space (X, d), for any descending sequence  $\{F_n\}$  of non-empty closed sets such that diam.  $(F_n) \to 0$  as  $n \to \infty$ ,  $\bigcap_{n=1}^{\infty} F_n$

consists of exactly one point.

(c) Give the definition of a bounded sequence in a metric space. Prove that a convergent sequence in a metric space is bounded.

Is a bounded sequence in a metric space always convergent? Is a bounded sequence in a metric space a Cauchy sequence? – Support your answer.

## Group-C [Marks-15]

#### Answer any *one* question from the following. $15 \times 1 = 15$

4

4

5

5

1+3+1+2

13.(a) If  $Z = (x_1, x_2, x_3)$  is the projection on the Riemann sphere of the point 3+2

z = x + iy in the complex plane, then show that

 $x_1 = \frac{2 \operatorname{Re} z}{|z|^2 + 1}, \quad x_2 = \frac{2 \operatorname{Im} z}{|z|^2 + 1}, \quad x_3 = \frac{|z|^2 - 1}{|z|^2 + 1},$ 

where the Riemann sphere is given by  $x_1^2 + x_2^2 + x_3^2 = 1$ .

Find the projection of  $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$  on the Riemann sphere.

- (b) Let f(z) = u(x, y) + iv(x, y) be defined on some open set G containing the point  $z_0$ . If the first partial derivative of u and v, that exist in G, are continuous at  $z_0$  and satisfy the Cauchy-Riemann equations at  $z_0$  then prove that f is differentiable at  $z_0$ .
- (e) Show that  $u(x, y) = x^3 3xy^2 + 3x^2 3y^2 + 1$  is harmonic and use Milne-Thomson method to find an analytic function whose real part is given by u(x, y).

14.(a) Prove that a function  $f: G \to \mathbb{C}$  is continuous at  $z_0 \in G$  if and only if for any sequence  $\{z_n\}$  in G converging to  $z_0$ , the sequence  $\{f(z_n)\}$  converges to  $f(z_0)$ .

4

5

6

- (b) Prove that the function f: C → C defined by f(z) = Re z, for z∈C is continuous everywhere but is differentiable nowhere on C.
- (c) Let  $f: \mathbb{C} \to \mathbb{C}$  be defined as

$$f(z) = \begin{cases} \frac{x^{4/3}y^{5/3} + ix^{5/3}y^{4/3}}{(x^2 + y^2)}, & \text{for } z \neq 0\\ 0, & \text{for } z = 0 \end{cases}$$

Show that f satisfies Cauchy-Riemann equations at z = 0 but is not differentiable at this point.