$$
\begin{array}{ll}
l=-3 & v=-1 \\
u=-3 w & v=-w^{2} \\
u=-3 w^{2} & v=-w= \\
u=v+0
\end{array}
$$

Time Allotted: 4 Hours

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours PART-II Examinations, 2017

MATHEMATICS-HONOURS $\quad \omega^{2}=-\frac{1}{2}(1-\sqrt{3} i)$
PAPER-MTMA-III
$\begin{aligned} &-3 \omega-\omega^{2}=\frac{3}{2}(1+\sqrt{3} i)+\frac{1}{2} \\ &=(2+\sqrt{3} i) .\end{aligned}$
Full Marks: 100

Group-A
Answer any three questions from the following

$$
5 \times 3=15
$$

Solve the equation by Dardan's method:

$$
28 x^{3}-9 x^{2}+1=0
$$

2. If α be an imaginary root of $x^{5}-1=0$ then find the equation whose roots are

$$
\alpha+2 \alpha^{4}, \alpha^{2}+2 \alpha^{3}, \alpha^{4}+2 \alpha
$$

Express the equation $x^{4}-2 x^{3}-5 x^{2}+10 x-3=0$ in the form $\left(x^{2}+m x+n\right)^{2}-(p x+q)^{2}=0$ and hence solve it.
4. Show that $(x+1)^{4}+a\left(x^{4}+1\right)=0$ is a reciprocal equation if $a \neq-1$. Solve the equation when $a=2$.

1
5. (a) If a, b, c are all positive real and $a b c=k^{3}$ then prove that

$$
(1+a)(1+b)(1+c) \geq(1+k)^{3} .
$$

(b) If a, b, c, be three positive numbers and $a+b+c=1$ then prove that

$$
\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c} \geq \frac{3}{5} .
$$

6. (a) If each a, b, c, d be greater than 1 then show that

$$
8(a b c d+1)>(a+1)(b+1)(c+1)(d+1)
$$

(b) If $a_{1}, a_{2}, \ldots, a_{n}$ be positive and $p>q>0$ then show that

$$
\left(a_{1}^{q}+a_{2}^{q}+\ldots+a_{n}^{q}\right)^{p} \leq n^{p-q}\left(a_{1}^{p}+a_{2}^{p}+\ldots+a_{n}^{p}\right)^{q} .
$$

Group-B

Answer any one question from the following
7. (a) Let H be a subgroup of a group G and $a, b \in G$. Show that the left coset $a H$ and $b H$ are identical if and only if $a^{-1} \in H$.
(b) Show that every cyclic group is Abelian. Give an example of a group which is Abelian but not cyclic.
(c) If $G=(Z,+)$ and $H=(2 Z,+)$ then find [$G: H$], where $[G: H]$ denotes index of H in G :
(d) If $a=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), b=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$ are two elements of S_{3}, find a solution of 3 the equation $a x=b$ in S_{3}.
8. (a) Prove that every group of order less than 6 is commutative.
(b) Prove that a cyclic group of prime order has no proper non-trivial subgroup.

$$
0 \frac{3}{2}-\frac{2}{3}
$$

$$
\frac{11}{4}-\frac{3}{2} \times \frac{11}{6_{2}}=
$$

(c) Show that inverse of the permutation $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)$ is itself. 2
(d) If $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right), g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$ then show that $(f g)^{-1}=g^{-1} f^{-1}$.

Group-C

Answer any two questions from the following
$10 \times 2=20$
9. (a) Prove that intersection of two subspaces of a vector space is a subspace of 2 the vector space.
(b) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3}: x-4 y+3 z=0\right\}$. Show that W is a subspace of \mathbb{R}^{3}.

Determine a basis of W and hence determine the dimension of W.
(c) Extend the set of vectors $\{(-3,2,-1),(1,-1,-5)\}$ to an orthogonal basis of the Euclidean space \mathbb{R}^{3} with standard inner product. Find the associated orthonormal basis.
10.(a) State replacement theorem. Using this theorem determine a basis of \mathbb{R}^{4} containing vectors $(1,2,1,3),(2,1,1,0)$ and $(3,2,1,1)$.
(b) Prove that the eigenvalues of a real symmetric matrix are all real.
11.(a) Define Euclidean vector space. Let α, β be two linearly independent vectors $1+2$ in a Euclidean vector space. Prove that $|(\alpha, \beta)|<\|\alpha\|\|\beta\|$.

Define row rank of a matrix. Use your definition to determine the row rank $1+2$ of the matrix

2097
R_{2}

$$
\left(\begin{array}{lll}
4 & 2 & 5 \\
3 & 0 & 1 \\
5 & 4 & 9
\end{array}\right)
$$

2

(c) Correct or justify:
(i) A set of vectors containing the null vector in a vector space V is linearly independent.
(ii) The union of two subspaces of a vector V is a subspace of V.
12.(a) Prove that a square matrix is orthogonally diagonalisable if and only if it is symmetric.
(b) If λ is a non-zero eigenvalue of an orthogonal matrix then show that $\frac{1}{\lambda}$ is also an eigenvalue.
(c) Correct or justify: If an $n \times n$ matrix A be non-singular, 0 is not an eigenvalue of A.

Group-D

Answer any two questions from the following
Define a subsequence of a sequence of real numbers. Prove that every $1+3$ subsequence of a convergent sequence is convergent.
(b) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences of real numbers, then prove that

$$
\underline{\lim } x_{n}+\underline{\lim } y_{n} \leq \underline{\lim }\left(x_{n}+y_{n}\right) .
$$

(c) State Bolzano-Weierstrass theorem on subsequences and illustrate it by taking example.
14.(a) State and prove the Intermediate Value Theorem for a continuous function defined on a closed interval.
(b) If $\sum_{n} a_{n}$ be a convergent series of positive and non-increasing terms, show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
(c) Test the convergence of the series

$$
\frac{1}{2} \cdot \frac{1}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7}+\ldots \ldots \ldots . \quad 2\left(r_{2}+\right)^{+2}
$$

2097

15.(a) If a real valued function f is continuous on a closed and bounded interval, then prove that it is bounded there.
(b) Define uniform continuity. If a real valued function is continuous on a closed and bounded interval then prove that it is uniformly continuous there.
(c) Examine wheather $f(x)=1-|x|$ has a maximum or minimum at $x=0$.
16.(a) State and prove Rolle's theorem. 5
(b) Obtain Maclaurin's infinite series expansion of $\log (1+x),-1<x \leq 1$. 5

Group-E

Answer any five questions from the following
17. Let $S=\left\{(a, 0) \in R^{2}: a \in R\right\}$. Show that S is closed but not open.

Define $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{\sqrt{x^{2}+y^{2}}} ; & (x, y) \neq(0,0) \\ 0 ; & (x, y)=(0,0)\end{array}\right.$
Show that f is not differentiable at $(0,0)$ though f is continuous at $(0,0)$.
19. If $f(x, y)=\left\{\begin{aligned} & x y ; \\ &|x| \geq|y| \\ &-x y ; \\ &|x|<|y|\end{aligned}\right.$.

Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$. Which conditions of Schwarz's theorem is not satisfied by f ? Justify your answer.
20. State and prove the converse of Euler's theorem on homogenous function of three variables.
21. Transform the equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=z^{2}$ by introducing new independent variables $u=x, v=\frac{1}{y}-\frac{1}{x}$ and new function $w=\frac{1}{z}+\frac{1}{x}$.
22. If a function $f(x, y)$ of two variables x and y when expressed in terms of new variables u and v defined by $x=\frac{1}{2}(u+v)$ and $y^{2}=u v$ becomes $g(u, v)$, then show that $\frac{\partial^{2} g}{\partial u \partial v}=\frac{1}{4}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{2 x}{y} \frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{1}{y} \frac{\partial f}{\partial y}\right)$.
23. Let the double limit $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exist and equal to A. Let the limit $\lim _{x \rightarrow a} f(x, y)$ exist for each fixed value of y in the neighbourhood of ' b ' and likewise let the limit $\lim _{y \rightarrow b} f(x, y)$ exist for each fixed value of x in the neighboourhood of ' a ', then prove that

$$
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=A=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y) .
$$

24. Show that the function $u=3 x+2 y-z, v=x-2 y+z$ and $w=x(x+2 y-z)$ are dependent and find the relation between them.

Justify the existence and uniqueness of the implicit function $y=y(x)$ for the functional equation $x \cos (x y)=0$ near the point $\left(1, \frac{\pi}{2}\right)$. Also find $\frac{d y}{d x}\left(1, \frac{\pi}{2}\right)$.

Group-F

Answer any two questions from the following
26. Find the area of the portion of the circle $x^{2}+y^{2}=1$ which lies inside the parabola $y^{2}=1-x$.

B.Sc./Part-II/Hons./MTMA-III/2017

27. Find the coordinate of the centre of gravity of the first arc of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$.

Show that the moment of inertia of a thin circular ring of mass M whose outer and inner radii are a and b respectively about an axis through the centre perpendicular to the plane of the ring is $\frac{1}{2} M\left(a^{2}+b^{2}\right)$.
29. If the loop of the curve $2 a y^{2}=x(x-a)^{2}$ revolves about the line $y=a$, then using Pappus theorem, find the volume of the solid generated.

