WEST BENGAL STATE UNIVERSITY

B.Sc. Honours PART-I Examinations, 2017

Mathematics-Honours

PAPER-MTMA-II

The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Group-A

Answer any five questions from the following:

1. (a) Using order completeness property of R prove that for every real number x, there is a positive integer n such that $n>x$.
(b) Prove that the set Q of rational numbers is dense and Archimedean.
2. (a) Prove that closure of a set is a closed set.
(b) If F is a closed set in R then prove that the complement of F is an open set in R.
(c) Find the derived set of the set Q of rational numbers.
3. (a) Prove that a convergent sequence is bounded.

B.Sc./Part-I/Hons./MTMA-II/2017

(b) If $x_{n}=\left(1+\frac{1}{n}\right)^{n}$, show that the sequence $\left\{x_{n}\right\}$ is monotonically increasing and bounded above. State with reasons whether it is convergent or not.
4. (a) If a sequence $\left\{x_{n}\right\}$ converges to l, then prove that $\left\{\left|x_{n}\right|\right\}$ converges to $|l|$. Is the converse true? Give reasons.
(b) Show that $\left\{\frac{n}{n+1}\right\}$ is a Cauchy sequence and $\left\{2^{n}\right\}$ is not a Cauchy sequence.
5. (a) Use Sandwich theorem to show that the sequence $\left\{x_{n}\right\}$ where $x_{n}=\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\cdots+\frac{1}{(n+n)^{2}}$ converges to 0.
(b) If $\left\{x_{n}\right\}$ converges to l, then prove that $\left\{y_{n}\right\}$ converges to l where $y_{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$.
(6.) (a) Prove that an infinite subset of an enumerable set is enumerable.
(b) Show that the set of rational numbers is enumerable.
7. (a) Verify Bolzano-Weierstrass theorem for the set $\left\{\frac{n}{n+1}: n \in N\right\}$.
(b) Prove or disprove: Boundedness is a necessary condition for a set to have a limit point.
(c) For any positive real numbers p and a, prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{p}}{(1+a)^{n}}=0
$$

8. (a) If $\lim _{x \rightarrow a} f(x)=l(\neq 0)$, then prove that there exists a neighborhood of a where $f(x)$ and l will have the same sign.
(b) Discuss the continuity of the function

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

at $x=0$.
(c) Give an example of discontinuity of second kind.
9. (a) If $f: D \rightarrow R$ be a function continuous at $x=c, c \in D$ then prove that for every sequence $\left\{x_{n}\right\}$ in D converging to $c,\left\{f\left(x_{n}\right)\right\}$ converges to $f(c)$.
(b) If $f(x)=\left\{\begin{aligned} x, & x \in Q \\ -x, & x \in R-Q\end{aligned}\right.$
then prove that $x=0$ is the only point of continuity.

Group-B

10. Answer any two questions from the following:
(a) Let $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x ; n>2, n \in \mathbb{N}$, then show that

$$
(n+1) I_{n}-(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}
$$

(b) Show that, $2^{2 m-1} \Gamma(m) \Gamma\left(m+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 m), m>0$.
(c) Evaluate: $\int_{0}^{\pi / 2} \frac{d x}{\left(c^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}} ; a, b>0$.
11. Answer any three questions from the following:
(a) Find the asymptotes of

$$
x^{2}\left(x^{2}-y^{2}\right)(x-y)+2 x^{3}(x-y)-4 y^{3}=0
$$

(b) Show that the pedal of the circle $r=2 a \cos \theta$ w.r. to origin is the cardioid
$r=a(1+\cos \theta)$. $r=a(1+\cos \theta)$.
(c) Show that the origin is a double point of the curve $x^{3}=y^{3}+a y^{2}, a \neq 0$ and it is a single cusp of first species.
(d) Find the evolute of the curve

$$
x=a(\cos t+t \sin t) ; y=a(\sin t-t \cos t)
$$

(d) $f \rho_{1}$ and ρ_{2} are radii of curvatures at two extremities of any chord of the cardioid $r=a(1+\cos \theta)$ passing through the pole, prove that $\int \rho_{1}^{2}+\rho_{2}^{2}=\frac{16 a^{2}}{9}$.

Group-C

Answer any three questions from the following

12.(a) Find the integrating factor and hence solve:

$$
\left(x y^{2}+2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d y=0
$$

(b) Find the orthogonal trajectories of the family of coaxial circles

$$
x^{2}+y^{2}+2 g x+c=0
$$

where g is the parameter and c is a constant.
13.(a) Reduce the equation $x p^{2}-2 p y+x+2 y=0$ to Clairaut's form by putting. $x^{2}=u$ and $y-x=v$. Hence obtain the general and singular solution.
B.Sc./Part-I/Hons./MTMA-II/2017
(b) Find the general and singular solution of the equation

2

$$
y=p x+\sqrt{a^{2} p^{2}+b^{2}}
$$

$\$$
$x^{e^{x}}$
(14).(a) Solve by the method of undetermined coefficient:
(b) Solve: $\left(D^{2}+2 D+1\right) y=x \cos x$.

$$
\left(D^{2}-3\right.
$$

(15).(2) Solve by the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{e^{x}}{1+e^{x}}
$$

(b). Solve: $x^{3} \frac{d^{3} y}{d x^{3}}+3 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=x \log x$.

$$
1+e^{-x-2 t} d x
$$

16.(a) Show that $x \frac{d^{3} y}{d x^{3}}+\left(x^{2}+x+3\right) \frac{d^{2} y}{d x^{2}}+(4 x+2) \frac{d y}{d x}+2 y=0$ is exact and solve it.
(b) Solve: $\frac{d^{2} y}{d x^{2}}-2 \tan x \frac{d y}{d x}+5 y=e^{x} \sec x$ by reducing it tor normal form.
17.(a) Solve by the method of operational factors:

(b) Solve: $x^{6} \frac{d^{2} y}{d x^{2}}+3 x^{5} \frac{d y}{d x}+9 y=\frac{1}{x^{2}}$ by changing the independent variable.

$$
(x+3) \frac{d^{2} y}{d x^{2}}-(2 x+7) \frac{d y}{d x}+2 y=(x+3)^{2} e^{x}
$$

$$
1+2-3+1
$$

1077
5

Group-D

Answer any five questions from the following

$5 \times 5=25$
18. ab) Find the equation of plane passing through the points whose position vectors are $2 \hat{i}-\hat{j}+\hat{k}, 3 \hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+3 \hat{j}+2 \hat{k}$.
(b) Find an unit vector perpendicular to both the vectors $2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $4 \hat{i}+3 \hat{j}-\hat{k}$
19. Using vector method prove the formula

$$
\cos (A-B)=\cos A \cos B+\sin A \sin B
$$

(20) For three vectors $\vec{a}, \vec{b}, \vec{c}$ prove that

$$
[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a} \vec{b} \vec{c}]^{2}
$$

21.(a) Let $A B C D$ be a parallelogram. Prove by vector method

$$
A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}
$$

(b) Find the work done when a force $\vec{F}=4 \hat{i}-3 \hat{j}+2 \hat{k}$ applied to an object and it moves from the point $(3,2,-1)$ to the point $(2,-1,4)$ along a straight line.
22. A force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is applied at a point $(1,-1,2)$. Find the moment of the force about the point $(2,-1,3)$.
23.(a) Show that the parallelograms on the same base and between the same parallel lines are equal in area.
(b) Find the directional derivative of $\phi=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction $\overrightarrow{P Q}$ where $Q(5,0,4)$.

B.Sc./Part-I/Hons./MTMA-II/2017

24.(a) If $\phi=\ln r$, show that $\vec{\nabla} \phi=\frac{\vec{r}}{r^{2}}$.
(b) Prove that for a scaler field $\phi, \vec{\nabla} \times(\vec{\nabla} \phi)=0$.
25. Prove that if a vector \vec{v} has continuous second order partial derivatives, $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{v})=0$.

Define an irrotational vector. Find the constants a, b, c such that the vector $\vec{V}=(-4 x-3 y+a z) \hat{i}+(b x+3 y+5 z) \hat{j}+(4 x+c y+3 z) \hat{k}$ is irrotational. (5)

