

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours PART-III Examination, 2016

Mathematics-Honours

Paper-MTma-VI

Time Allotted: 4 Hours
Full Marks: 100

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. Symbols are of usual significance.

Group- \mathbf{A}

Answer any two questions frem Question No. 1 to 3 and any one from Question No. 4 and 5

1. Answer any three of the following questions: $5 \times 3=15$
(a) If $\left\{A_{n}\right\}$ be a monotonic sequence of events, then show that

$$
P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) .
$$

(b) Four dice are thrown. Find the probability that the sum of the numbers is 18 .
(c) If n objects are distributed among ' a ' men and ' b ' $(b<a)$ women, show that probability that the women get an odd number of objects is

$$
\frac{\frac{1}{2}\left[(a+b)^{n}-(a-b)^{n}\right]}{(a+b)^{n}}
$$

(d) Define conditional probability $P(A / B)$. Show that conditional probabilities satisfy all the three axioms of probability.
(e) Find the probability density function $f(x)$ corresponding to the probability distribution function

$$
F(x)=\left\{\begin{array}{cc}
0, & -\infty<x<0 \\
1-e^{-x}, & 0 \leq x<\infty
\end{array} .\right.
$$

2. Answer any three questions:
(a) State Tchebycheff's theorem and hence prove Bernoulli's limit theorem.
(b) Derive Poisson approximation to the binomial Law in the limiting case.
(c) If X is a $\gamma(l)$ variate, find the probability density function of \sqrt{X}.
(d) Let λ and μ_{r} denote the mean and r-th moment about the mean respectively of a Poisson distribution. Obtain the following recurrence relation:

$$
\mu_{r+1}=\lambda\left[r \mu_{r-1}+\frac{d \mu_{r}}{d \lambda}\right]
$$

(e) Find the median and mode, if any, of the distribution having probability density function $f(x)=\lambda e^{-\lambda x},(\lambda>0, x>0)$.
3. Answer any three of the following:
(a) The joint probability density function of the random variable x and y is $f(x, y)=\left\{\begin{array}{l}6(1-x-y), \text { for } x \geq 0, y \leq 0, x+y<1 \\ 0 \text { elsewhere. }\end{array}\right.$
Find the (i) marginal probability density functions, (ii) the covariance of x and y.

B.Sc./Part-III/Hons/MTMA-VI/2016

(b) If X_{n} be a $\operatorname{Binomial}(n, p)$ variate, then show that

5
$\frac{\left(X_{n}-n p\right)}{\sqrt{n p q}}$ is asymptotically $\operatorname{Normal}(0,1)$.
(c) State Bernoulli's theorem and the Law of Large numbers. Obtain Bernoulli's Theorem as a particular case of the Law of Large numbers for equal components.
(d) A vertical board is ruled with horizontal parallel lines at a constant distance d apart. A needle of length $l(<d)$ is thrown at random on the board. Find the probability that it will intersect one of the lines.
(e) Let (X, Y) be a two- dimensional random variable. Prove that $[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$. Hence show that $-1 \leq \rho \leq 1$, where ρ is the correlation coefficient between X and Y.
4. (a) Define an unbiased and consistent estimate of a parameter connected with the distribution function of a population. Prove that sample mean is always unbiased and consistent estimate of the population mean.
(b) Find the maximum likelihood estimate of the parameter λ of a continuous population having the density function $f(x)=\lambda x^{\lambda-1},(0<x<1)$, where $\lambda>0$.

B.Sc./Part-III/Hons/MTMA-VI/2016

(c) Let $s_{1}^{2}, s_{2}^{2}, \ldots . ., s_{k}^{2}$ denote a sample of size k from the population of the unbiased estimate of the population variance for a normal (m, σ) population. Write down the likelihood function for this sample and show that maximum likehood estimate of σ^{2} is given by, $\hat{\sigma}^{2}=\frac{\left(s_{1}^{2}+s_{2}^{2}+\ldots \ldots .+s_{k}^{2}\right)}{k}$.
5. (a) The regression lines for a bivariate sample are given by
$x+2 y-5=0$ and $2 x+3 y-8=0$ and let $s_{x}^{2}=12$. Calculate the values of \bar{x}, \bar{y}, s_{y} and r.
(b) Write a short note on χ^{2} test of goodness of fit of a random sample to a hypothetical distribution.
(c) Obtain the best critical region for the population

$$
f(x, \theta)=\theta e^{-\theta x}, x \geq 0
$$

of the size α for testing $H_{0}: \theta=\theta_{0}$ against the alternative $\mathrm{H}_{1}: \theta=\theta_{1}$.

B.Sc./Part-III/Hons/MTMA-VI/2016

Group- B

Answer any three questions from Section-I and any two from Section-II.

Section- I

[Marks- 30]
6. (a) Define nth order divided difference of a function $f(x)$ based on interpolating points $x_{0}, x_{1} \ldots \ldots, x_{n}$. If the interpolating points are equally spaced,
$x_{i}=x_{o}+r h, r=0,1,2, \ldots, n$, then show, in usual symbol, that $f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\frac{\Delta^{n} f\left(x_{n}\right)}{n!h^{n}}$.
(b) Show that $\Delta \log f(x)=\log \left\{1+\frac{\Delta f(x)}{f(x)}\right\}$.
7. (a) If an equation $f(x)=0$ has a real root, prove that bisection method is unconditionally convergent to the root and that the convergent is linear.
(b) Describe the method of false position for finding a real root of
an equation $f(x)=0$ and obtain the corresponding iteration formula. Discuss its advantages and disadvantages in comparison to Newton-Raphson method.
8. (a) State the general principle of quadrature formula for evaluating an integral of the form $\int_{a}^{b} f(x) d x$, where a, b are finite. Hence or otherwise obtain the trapezoidal rule. Is it a closed type formula? Justify your answer.

B.Sc./Part-III/Hons/MTMA-VI/2016

(b) Explain the method of fixed point iteration for numerical solution of the equation of the form $x=\phi(x)$. Derive the condition of convergence.
9. (a) Explain the principle of numerical differentiation. Deduce Lagrange's numerical differentiation formula (without error
term).
(b) What are basic concepts of Hermite interpolation? Prove the uniqueness of Hermite interpolation polynomial.
10. (a) Write down the steps to be followed to solve for $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ from the $n \times n$ system of linear equations $A X=B$ by Gauss-elimination method with partial pivoting,
where $A=\left(a_{i j}\right)_{n \times n}$ is the coefficient matrix and
$B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T}$. $A X=B$ by Gauss-elimination method with partial pivoting,
where $A=\left(a_{i j}\right)_{n \times n}$ is the coefficient matrix and
$B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T}$.
(b) Solve the equation $\frac{d y}{d x}=y^{2}+y x, y(1)=1$ by modified Euler's
method to obtain $y(1.2)$ and $y(1.4)$ method to obtain $y(1.2)$ and $y(1.4)$.

