

WEST BENGAL STATE UNIVERSITY B.Sc. Honours PART-III Examination, 2016

MATHEMATICS-HONOURS

Paper-MTMA-V

Time Allotted: 4 Hours

Full Marks: 100

 $3 \times 5 = 15$

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

Gourp-A

[Marks-70]

Answer Question No. 1 and any five from the rest.

- 1. Answer any *five* questions:
 - (a) If $A = \left(-\frac{1}{2}, \frac{1}{2}\right)$ and $B = \left\{\pm \frac{1}{2}, \pm 2\right\}$, then examine whether
 - $A \cup B$ is compact in \mathbb{R} .
 - (b) Justify: If $\sum_{n=1}^{\infty} x_n$, $(x_n > 0)$ is convergent then $\sum_{n=1}^{\infty} x_n^2$ is convergent.
 - (c) Let $f_n(x) = \frac{\sin nx}{\sqrt{n}}$, $x \in [-1, 1]$. Does $\{f_n\}$ converge uniformly on [-1, 1]? Justify.

1

3079

(d) Show that the function $f: [0, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = x \sin \frac{1}{x}, \text{ for } x \neq 0$$

0, for
$$x = 0$$

is not of bounded variation on [0, 1].

- (e) Assuming $\Gamma(m) \Gamma(1-m) = \pi \operatorname{cosec} m\pi, 0 < m < 1$ Show that $\Gamma(\frac{1}{9}) \Gamma(\frac{2}{9}) \dots \Gamma(\frac{8}{9}) = \frac{16}{3} \pi^4$.
- (f) Verity whether the value of the integral $\int x d([x] x)$ is $\frac{3}{2}$

(where [x] denotes the greatest integer not greater than x).

- (g) Prove or disprove: If |f| is Riemann integrable over a closed and bounded interval I, then f in also Riemann integrable over Ι.
- (h) If e is defined by the equation $\int_{-\infty}^{e} \frac{dt}{t} = 1$, prove that 2 < e < 3.
- (i) Appling Dirichlet's test determine the convergence of $\int \sin x^2 \, dx \, .$

2. (a) (i) Give an example of a

- (a) closed subset of \mathbb{R} which in not compact
- (b) bounded subset of \mathbb{R} which is not compact
- (ii) For a closed subset S and compact subset T of \mathbb{R} , show that $S \cap T$ is compact.
- (b) Prove that every compact of \mathbb{R} is closed and bounded.
- (c) Show that a real valued continuous function on a closed and bounded subset of \mathbb{R} is uniformly continuous.
- 3, (a) When is a sequence of functions $f_n: S \to \mathbb{R}, S \subseteq \mathbb{R}, n \in N$, said to uniformly converge to a function $f: S \to \mathbb{R}$?

Let $\{f_n: S \to \mathbb{R}, S \subseteq \mathbb{R}, n \in N\}$ converges uniformly on S. If each f_n is continuous at a point c of S, then show that the limit function f in also continuous at c.

 $\frac{2}{f(n)-c(2)} + \frac{2}{f(n)-c(2)} + \frac{2}{f(n)-$ 3079

(1+1)+2

3

4

1 + 3

- (b) If a sequence of functions {f_n: S → ℝ, S ⊆ ℝ, n ∈ N} satisfies |f_n(x)| ≤ M_n (x ∈ S, n = 1, 2,), Prove that ∑[∞]_{n=1} f_n converges uniformly if ∑[∞]_{n=1} M_n converges.
 (c) Let f_n(x) = n²x (1 - x)ⁿ, x ∈ [0, 1], n ∈ N. Verity whether lim ∫¹_{n→∞} ∫¹_n f_n(x) dx ≠ ∫¹_{n→∞} f_n(x) dx
- 4. (a) State Abel's test of uniform convergence. Using this, Show that $\sum_{n \to 1}^{\infty} \frac{(-1)^n}{n^{n+\frac{1}{2}}}$ converges uniformly on $[0, \infty]$.
 - (b) Let the radius of convergence of $\sum_{n=0}^{\infty} a_n x^n$ be r. Find the radius of convergence of $\sum_{n=0}^{\infty} a_n x^{2n}$.
 - (c) Assuming the power saris expansion for $(1+x)^{-1}$ as $1-x+x^2-$ 2+2 $x^3+..., (|x| < 1)$, obtain the power series expansion of $\log(1+x)$. Deduce that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...=\log 2$
- 5. (a) If $f: [a, b] \to \mathbb{R}$ be Riemann integrable over [a, b], then prove that |f| is R-integrable over [a, b]and $\begin{vmatrix} x \\ f(x) dx \end{vmatrix} \leq \int_{a}^{b} |f(x)| dx$
 - and $\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$

(b) If $f: [a, b] \rightarrow \mathbb{R}$ be Riemann integrable over [a, b].

For $a \le x \le b$, put $F(x) = \int f(t) dt$.

Prove the following:

(i) F is of bounded variation on [a, b](ii) If f is continuous at a point $c \in [a, b]$, then F is differentiable at c and F'(c) = f(c).

3079

3

Turn Over

3

1 + 3

3

2+3

(c) Let f: [a, b] → R be defined as follows: f(x) = x, for x ∈ [0, 1) = 0, for x = 1. Find the primitive of f and using fundamental theorem of 1+1 integral Calculus, establish that ∫₀¹ f(x)dx=1.

3

4

3

3

5

4

6. (a) Use the integral definition of $\log x$ to prove that

for x > 0, $\log(1+x) > x - \frac{1}{2}x^2$.

 (b) State the second Mean Value Theorem of integral Calculus in 1+3 Bonnet's form and use it to prove that

$$\int_{\lambda}^{\mu} \sin^2 x \, dx \leq \frac{1}{\lambda}, \text{ if } 0 < \lambda < \mu < \infty.$$

- (c) Let $f : [a, b] \rightarrow \mathbb{R}$ be an increasing function. Show that f is Riemann integrable over [a, b].
- 7/ (a) If f is monotonic on [a, b], then prove that f is of bounded variation on [a, b].
 - (b) Establish by an example that boundedness of f' is not necessary for a function f to be of bounded variation.
 - (c) Let f(x) be a function of period 2π s.t.

 $f(x) = \frac{x}{2}$ over the interval $0 < x < 2\pi$.

Show that the Fourier series for f(x) in the interval $0 < x < 2\pi$ is

$$\frac{\pi}{2} - [\sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x + \dots].$$

8. (a) It is given that the following integral converges

2 an in

 $I = \int_{0}^{\infty} \frac{\log(1+4x^2)}{x^2} dx$. By introducing a parameter in the

integrand and carrying a suitable differentiation under the integral sign, show that $I = 2\pi$.

4

3079

maximum value.

- (b) Show that for p > 1, the integral ∫₀[∞] log x / x^p dx is convergent.
 (c) Show that the integral ∫₀¹ 1 / √x sin 1 / x dx is absolutely convergent.
 9. (a) Using the method of Lagrange's multipliers, find the points on the sphere x² + y² + z² = 14 where 3x 2y + z attains its
 - (b) Find the radius of convergence of the following series: $1 + \frac{ab}{c}x + \frac{a(a+1)b(b+1)}{2!c(c+1)}x^2 + \frac{a(a+1)(a+2)b(b+1)(b+2)}{3!c(c+1)(c+2)}x^3 + \dots$
 - (c) State and prove Mean Value Theorem for a function of two real variables.

10. (a) Evaluate
$$\iiint \frac{dx \, dy \, dz}{x^2 + y^2 + (z - 2)^2}$$
 over the sphere $x^2 + y^2 + z^2 \le 1$

- (b) Find the area of the surface generated by revolving the cardioide $r = a(1+\cos\theta)$ about the initial line.
- (c) Test whether the graph of the following function is a rectifiable curve

$$f(x) = x \cos \frac{\pi}{2x} \quad \text{for } x \neq 0$$
$$= 0 \qquad \text{for } x = 0$$

Group-B [Marks-15]

Answer any one question from the following : $15 \times 1 = 15$ 11. (a) Define metric on a set $X \neq \Phi$.2+3Let X be the set of all convergent sequences in \mathbb{R} and λ

d: $X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y) = \sup \{|x_n - y_n| : n \in N\}$ for all $x = \{x_n\}$ and $y = \{y_n\}$ in X. Show that (X, d) is a metric space.

1+ corre + 2 corre - simme 2+2 corre (00) 2+2 corre (00)

4

3

4

3

1 + 3

4

3

4

3079

5

- (b) Define Cauchy sequence in a metric space (X, d). Prove that a 1+3+1 convergent sequence {x_n} is (X, d) is a Cauchy sequence. Give an example to show that a Cauchy sequence need not be convergent in an arbitrary metric space.
- (c) Let Y be a subspace of a metric space (X, d) then prove that

(i) $G(\subseteq Y)$ is open in a metric space (Y, d_Y) iff $G = H \cap Y$ for some open set H in (X, d).

(ii) $F(\subseteq Y)$ is closed in (Y, d_Y) iff $F = V \cap Y$ for some closed set V in (X, d).

- 12. (a) Let (X, d) be a discrete metric space, then prove that any subset of (X, d) is both closed and open.
 - (b) Define the term 'complete metric space'. In a metric space (X, d), show that a Cauchy sequence is convergent iff it has a convergent sub sequence.
 - (c) Define closed set in a metric space (X, d). Show that for any $A \subseteq X, A^{\circ}$ is an open set and \overline{A} is a closed set where A° and \overline{A} denote the interior and closure of A respectively. Give an example of a nested sequence of open intervals in \mathbb{R} .

Group-C [Marks-15]

Answer any *one* question from the following : $15 \times 1 = 15$

- 13. (a) Find the complex number z that corresponds to the point $\begin{pmatrix} 2 & 2\sqrt{3} & 3 \end{pmatrix}$
 - $\left(\frac{2}{5}, \frac{2\sqrt{3}}{5}, \frac{3}{5}\right)$ on the Riemann sphere $x_1^2 + x_2^2 + x_3^2 = 1$.
 - (b) Let *u*, *v* be real valued functions such that

f(x, y) = u(x, y) + i v(x, y) is differentiable at $z_0 = x_0 + iy_0$, then prove that the functions u and v are differentiable at the point (x_0, y_0) and satisfy the Cauchy-Riemann equations.

6

3079

.

3

5

1+2+2+1

2+2

3 + 2

(c) Define harmonic function. Show that the function 1+3+3 $u(x, y) = x^3 - 3xy^2$, $x, y \in \mathbb{R}$ is a harmonic function. Apply Milne-Thomson's methods to find a real valued function v such that u + iv is analytic on \mathcal{C} .

14. (a) Prove that
$$f(z) = \begin{cases} \frac{z \operatorname{Re} z}{|z|}, & \text{if } z \neq 0 \\ 0, & \text{if } z = 0 \end{cases}$$

is continuous at z = 0 but not differentiable at z = 0.

(b) Let f(z) = u(x, y) + i v(x, y) where u(x, y) and v(x, y) are real value functions, be defined on a region G except at $z_0 = x_0 + iy_0$, then show that $\lim_{z \to z_0} f(z) = a + ib$ iff $\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = a$ and $\lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = b$.

(c) Let $\{z_n\}$ be a complex sequence. Show that if $\lim z_n = a$ and

 $\lim_{n\to\infty} z_n = b$, then a = b.

Also show that if $\{z_n\}$ converges to z then $\{|z_n|\}$ converges to |z|. Is the converse true? Justify.

252

2+3

5

2+2+1