WEST BENGAL STATE UNIVERSITY

B.Sc. Honours PART-II Examinations, 2016

Mathematics-Honours

Paper-MTMA-IV
Time Allotted: 4 Hours
Full Marks: 100

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable.

Group-A

Answer any two questions from the following:

1. (a) Prove thai the locus of the pole of normal chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is the curve $a^{6} y^{2}-b^{6} x^{2}=\left(a^{2}+b^{2}\right)^{2} x^{2} y^{2}$.
(b) Two tangents to the parabola $y^{2}=4 a x$ meet at an angle of 45°. Prove that the locus of the point of intersection is the curve $y^{2}-4 a x=(x+a)^{2}$.
2. (a) The section of a cone whose guiding curve is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, z=0$ by the plane $x=0$ is a rectangular Hyperbola. Show that the locus of the vertex is $\frac{x^{2}}{a^{2}}+\frac{y^{2}+z^{2}}{b^{2}}=1$.
(b) Find the equations to the tangent planes to the conicoid $2 x^{2}-6 y^{2}+3 z^{2}=5$ which pass through the line $x+9 y-3 z=0=3 x-3 y+6 z-5$.

B.Sc./Part-II/Hons/MTMA-IV/2016

3. (a) Find the equations of the generators of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ through a point of the principal elliptic section. Hence, show that the projection of the generators of a hyperboloid on coordinate planes is tangents to the section of the hyperboloid by that plane.
(b) Reduce the equation $6 y^{2}-18 y z-6 z x+2 x y-9 x+5 y-5 z+2=0$ to the canonical form and state the nature of the surface represented by it.

Group-B

Answer any one question from the following:
4. (a) Solve: $\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$.
(b) Find the complete integral of the equation $p^{3}+q^{3}=3 p q z$.
(c) Apply Charpit's method to find the complete integral of $(p+q)(p x+q y)=1$.
5. (a) Solve: $z(z-y) d x+z(z+x) d y+x(x+y) d z=0$.
(b) Find the eigen values and eigen functions for the differential equation $\frac{d^{2} y}{d x^{2}}+\lambda y=0$, which satisfies the boundary conditions $y(0)=0$ and $y(\pi)=0$.

Group-C

6. (a) Define a basic feasible solution for a L.P.P:

$$
\begin{array}{ll}
\text { Max } & Z=c x \\
\text { Subject to } & A x=b ; x \geq 0
\end{array}
$$

Prove that if for basic feasible solution X_{B} of the above L.P.P $z_{j}-c_{j} \geq 0$ for every column a_{j} of A , then X_{B} is an optimal solution.
(b) Use Charne's M-method to salve the following L.P.P.

Maximize $Z=x_{1}+5 x_{2}$

Subject to $3 x_{1}+4 x_{2} \leq 6$
$x_{1}+3 x_{2} \geq 3$
$x_{1}, x_{2} \geq 0$.

Or

7. (a) Define the dual of the given primal L.P.P.

Max $Z=\mathrm{cx}$
Subject to $A x \leq b, x \geq 0$.
Prove that if the primal problem has an unbounded objective function then the dual has no feasible solution.
(b) Use duality to solve the following L.P.P.

Minimize $Z=4 x_{1}+3 x_{2}+6 x_{3}$
Subject to $x_{1}+x_{3} \geq 2$

$$
\begin{aligned}
& x_{2}+x_{3} \geq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

8. (a) Show that the number of basic variables in transportation problem is at most
$(m+n-1)$, where m is the number of origins and n is the number of destination.
(b) Solve the assignment problem with the following cost matrix

	I	II	III	IV	V
A	9	8	7	6	4
B	5	7	5	6	8
C	8	7	6	3	5
D	8	5	4	9	3
E	6	7.	6	8	5

9. (a) Prove that if we add a fixed number P to each element of the payoff matrix, then the optimal strategies remains unchanged while the value of the game is increased by P.

B.Sc./Part-II/Hons/MTMA-IV/2016

(b) Use dominance to reduce the payoff matrix and solve the following game problem given by the payoff matrix.
A
B

-5	3	1	20
5	5	4	6
-4	-2	0	-5

Group-D

Answer any three questions from the following:
10. (a) A particle of unit mass is projected with a velocity u at an inclination α above the horizon in a medium, the resistance of which is k times the velocity. Show that its direction will make an angle $\frac{\alpha}{2}$ with the horizon after a time $\frac{1}{k} \log \left(1+\frac{k u}{g} \tan \frac{\alpha}{2}\right)$.

Two perfectly inelastic bodies of masses m_{1} and m_{2} moving with velocities u_{1} and u_{2} in the same direction impinge directly. Show that the loss of kinetic energy is
$\frac{1}{2} \frac{m_{1} m_{2}}{m_{1}+m_{2}}\left(u_{1}-u_{2}\right)^{2}$.
11.(a) A particle of mass m is projected vertically under gravity. The resistance of the air being $m k$ times the velocity. Show that the greatest height attained by the particle is $\frac{v^{2}}{g}[\lambda-\log (1+\lambda)]$ after a time $\frac{v}{g} \log (1+\lambda)$ where v is the terminal velocity of the particle and λv is its initial velocity.
14.(a) An engine is pulling a train and works as a constant power, doing H units of work per second. If M is the mass of the whole train and F, the resistance (supposed constant) then prove that the time of generating velocity V from rest is $\left(\frac{M H}{F^{2}} \log \frac{H}{H-F V}-\frac{M V}{F}\right)$ seconds.
(b) One end of an elastic string, of unstretched length a, is tied to a point on a smooth table and a particle is attached to the other end, and can move freely on the table. If the path be nearly a circle of radius b, then show that its apsidal angle is approximately $\pi \sqrt{\frac{b-a}{4 b-3 a}}$.

