WEST BENGAL STATE UNIVERSITY
B.Sc. Honours Part-II Examinations, 2016

## Mathematics-Honours

## PAPER-MTMA-III

## Time Allotted: 4 Hours

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable.

## Group-A

Answer any three questions from the following:

1. Solve the equation by using Cardan's method:
$x^{3}-30 x+133=0$.
2. Solve the equation by Ferraris method:
$2 x^{4}+6 x^{3}-3 x^{2}+2=0$.
3. Find the special roots of the equation $x^{24}-1=0$ and
deduce that $\cos \frac{\pi}{12}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$ and $\cos \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
4. Determine the transformation $x=m y+n$ which will change the equation $x^{4}+5 x^{3}+9 x^{2}+5 x-1=0$ into reciprocal equation and hence solve it.

## B.Sc./Part-II/Hons/MTMA-III/2016

5. If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers not all equal and $m$ is a rational number such that $0<m<1$ then prove that

$$
\left(\frac{x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}}{n}\right)<\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{m}
$$

6. (a) Find the least value of $x^{2}+y^{2}+z^{2}$ for positive values of $x, y, z$ such that $2 x+3 y+6 z=14$
(b) If $a, b, c$ be all positive then show that

$$
\left(a^{2} b+b^{2} c+c^{2} a\right)(a b+b c+c a) \geq a b c(a+b+c)^{2}
$$

## Group-B

Answer any one question from the following:
7. (a) If $H$ and $K$ be two subgroups of a group $G$ then the product $H K$ is a subgroup of $G$ if $H K=K H$.
(b) Show that all roots of the equation $x^{6}=1$ form a cyclic group of order 6 under usual multiplication of complex numbers.
(c) What do you mean by an even permutation on the set $I_{n}=\{1,2, \ldots, n\}$ ? Is the permutation $\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 2 & 9 & 1 & 7 & 6 & 4 & 8\end{array}\right)$ an even permutation on $I_{9}$ ? Justify your answer.
8. (a) In the symmetric group $S_{3}$ show that the subsets $A=\{e,(12)\}, B=\{e$, (1 223 ), (1 $\left.\left.\begin{array}{l}1 \\ 3\end{array} 2\right)\right\}$ are subgroups. Use Lagrange's theorem to show that $A \cup B$ is not a subgroup of $S_{3}$.
(b) Prove that every subgroup of a cyclic group is cyclic.
(c) List all subgroup of a cyclic group of order 60.
(d) If $G$ is a finite group then for any $a \in G$ prove that $a^{0(G)}=e$.

## Group-C

Answer any two questions from the following:
9. (a) Define a vector space over a field $F$.
(b) Consider the subspaces
$S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: 2 x+y+z+w=0\right\}$
$T=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+2 y+z+w=0\right\}$ " of $\mathbb{R}^{4}$. Determine a basis of the subspace $S \cap T$ and hence determine the dimension of $S \cap T$.
(c) Prove that the matrix $\left(\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right)$ is diagonalisable and hence determine a diagonal matrix which is similar to it.
10.(a) State and prove Cayley-Hamilton theorem.
(b) Let $S=\{\alpha+\beta, \alpha-\beta, \gamma\}, T=\{\alpha, \beta+\gamma, \beta-\gamma\}$ be subsets of a real vector space V. Prove that $L(S)=L(T)$.
(c) Prove or disprove: Union of two subspaces of a vector space V is a subspace of V .
11.(a) Prove that $(1,1,1)$ may replace any one of the vectors of the basis $\{(1,2,3)$, $(2,3,1),(3,1,2)\}$ of $\mathbb{R}^{3}$.
(b) Prove that each eigenvalue of a real orthogonal matrix has unit modulus.
(c) Find the row space and row rank of the matrix

$$
A=\left(\begin{array}{cccc}
1 & 1 & -2 & 1 \\
3 & 0 & 4 & 1 \\
-1 & 2 & 5 & 2
\end{array}\right)
$$

12.(a) Prove that any singleton set consisting of non-zero vector of a finite dimensional vector space V over F is either a basis or can be extended to a basis of V .
(b) Prove that in an Euclidean vector space, $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$. What happen when the equality holds? Give an example to show that if $\alpha, \beta$ are linearly dependent then $\|\alpha+\beta\|$ may not be equal to $\|\alpha\|+\|\beta\|$.
(c) Let. $u=\left(x_{1}, x_{2}, x_{3}\right), v=\left(y_{1}, y_{2}, y_{3}\right)$ be any two elements of $\mathbb{R}^{3}$. A mapping $f: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(u, v)=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}$. Examine whether $f$ is an inner product in $\mathbb{R}^{3}$.

## Group-D

Answer any two questions from the following:
13.(a) Prove that a monotone sequence cannot have two subsequences one of which is convergent and the other is divergent.
(b) Prove that the set of all subsequential limits of a bounded sequence is closed.
(c) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two bounded real sequences such that $\left\{x_{n}\right\}$ converges. Prove that

$$
\varlimsup_{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\underset{n \rightarrow \infty}{\lim } x_{n}+\varlimsup_{n \rightarrow \infty} y_{n} .
$$

14.(a) Prove that the $p$-series $\sum \frac{1}{n^{p}}$ is convergent for $p>1$ and is divergent for $0<p \leq 1$.
(b) State and prove the Leibnitz test for the convergence of an alternating series of reals.
(c) If $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ and $f(x)$ is continuous at a point of $\mathbb{R}$, prove that $f$ is uniformly continuous on $\mathbb{R}$.
15.(a) State Riemann's re-arrangement theorem (on series).
(b) State Bolzano's theorem on continuous function. Does the result hold if the function is not continuous?
(c) If $f$ and $g$ be continuous on the interval $[a, b]$ such that $f(r)=g(r)$ for all rational values of $r$ in $[a, b]$, then examine whether $f(x)=g(x)$ for all $x \in[a, b]$.
(d) Prove that if a function $f$ is continuous and strictly monotonic increasing in $[a, b]$ then the function $f$ is invertible.
16.(a) State and prove Darboux theorem on derivative.
(b) If $\alpha, \beta$ be the roots of the equation $a x^{2}+b x+c=0$, then find $\lim _{x \rightarrow \alpha} \frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$.
(c) If $y=a \cos (\log x)+b \sin (\log x)$,
prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}+1\right) y_{n}=0$.

## Group-E

Answer any five questions from the following:

$$
\text { prove that } x^{-} y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{-}+1\right) y_{n}=0 \text {. }
$$

17. $S=\left\{(x, y) \in \mathbb{R}^{2}: x, y \in Q\right\}$. Show that $S$ is neither open nor closed.
18. Prove that if $f(x, y)$ is continuous at $(a, b)$ then $f(x, b)$ and $f(a, y)$ are continuous at $x=a$ and $y=b$ respectively. Is the converse true?
19. Define $f(x, y)= \begin{cases}x \sin \frac{1}{x}+y \sin \frac{1}{y} ; & x y \neq 0 \\ 0 \quad & x y=0\end{cases}$
Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist but the repeated limits do not exist. Is $f(x, y)$ continuous at $(0,0)$ ?

## B.Sc./Part-II/Hons/MTMA-III/2016

20. Let $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \log \left(x^{2}+y^{2}\right) ; & (x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{cases}$

Show that $f$ does not satisfy all the conditions of Schwarz theorem but $f_{x y}(0,0)=f_{y x}(0,0)$.
21. Transfer the equation $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=(y-x) z$ by introducing new independent variables $u=x^{2}+y^{2}, v=\frac{1}{x}-\frac{1}{y}$ and the new function $w=\log z-(x+y)$.
22. If $f(x, y, z)$ is a homogeneous function of degree $n(\neq 1)$ having continuous second order partial derivatives then show that

$$
\left|\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right|=\frac{(n-1)^{2}}{z^{2}}\left|\begin{array}{ccc}
f_{x x} & f_{x y} & f_{x} \\
f_{y x} & f_{y y} & f_{y} \\
f_{x} & f y & \frac{n f}{n-1}
\end{array}\right| .
$$

23. If $w$ is a differentiable function of $u$ and $v$, where $u=x^{2}-y^{2}-2 x y$ and $v=y$, then prove that $(x+y) \frac{\partial w}{\partial x}+(x-y) \frac{\partial w}{\partial y}=0$ is equivalent to $\frac{\partial w}{\partial v}=0$.
24. Show that the function $u=\frac{x}{y-z}, v=\frac{y}{z-x}, w=\frac{z}{x-y}$ are dependent and find the relation between them.
25. Justify the existence and uniqueness of the implicit function $y=y(x)$ for the functional equation $2 x y-\log (x y)=2 e-1$ near $(1, e)$. Also find $\frac{d y}{d x}$ at $(1, e)$.

## B.Sc./Part-II/Hons/MTMA-III/2016

## Group-F

Answer any two questions from the following:
26. Show the area bounded by $y^{2}=a x^{3}$ and the double ordinate is $\frac{2}{5}$ of the area of the rectangle formed by this ordinate and the abscissa.
27. Find the centre of gravity of the planer region bounded by the parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ and the coordinate axes.
28. Show that the volume of the solid obtained by revolving the cardioid $r=a(1+\cos \theta)$ about the initial line is $\frac{8}{3} \pi a^{3}$.
29. Prove that the moment of inertia of a solid right circular cone of height $h$ and semi vertical angle $\alpha$ about its axis is $\frac{3}{10} m h^{2} \tan ^{2} \alpha$.

