B.Sc./Part-III/Hons/MTMA-VIII/2016

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-III Examination, 2016

Mathematics-Honours
 MTMA-VIII

Time Allotted: 2 Hours

Full Marks: 50
The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. Symbols are of usual significance.

Group- \mathbf{A}

(Full Marks- 25)

Section-I

(Linear Algebra)

Answer one question from the following:
$10 \times 1=10$

1. (a) Prove that two finite dimensional vector spaces V and W over
a field F are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
(b) The matrix of a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ relative to the ordered bases $(0,1,1),(1,0,1),(1,1,0)$ of \mathbb{R}^{3} and $(1,0)$, $(1,1)$ of \mathbb{R}^{2} is

$$
\left(\begin{array}{lll}
2 & 1 & 4 \\
1 & 2 & 0
\end{array}\right)
$$

Find the explicit representation of T and the matrix of T relative to the ordered bases $(1,0,1),(1,1,0),(0,1,1)$ of \mathbb{R}^{3} and $(1,2),(1,1)$ of \mathbb{R}^{2}.
2. (a) Let V and W be two linear spaces over a field F and
$B=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots ., \alpha_{n}\right\}$ be a basis for V. Prove that for any n elements $\beta_{i}(i=1,2, . ., n)$ of W, there exists a unique linear transformation $\mathrm{T}: V \rightarrow W$ such that $\mathrm{T}\left(\alpha_{i}\right)=\beta_{i}(i=1,2, \ldots, n)$.
(b) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(3 x_{1}-2 x_{2}-x_{3}-x_{4}, x_{1}+x_{2}-2 x_{3}-3 x_{4}\right)$, for any $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$. Prove that T is a linear transformation. Hence find rank T, nullity T and a basis of $\operatorname{ker} T$.

Section- II

(Modern Algebra)

Answer any one question from the following:

3. (a) Let $f: G \rightarrow G^{\prime}$ be a homomorphism of groups. Prove that ker f is a normal subgroup of G. Also prove that f is one-toone if and only if ker $f=\left\{e_{G}\right\}$, where e_{G} represents the identity element of G.
(b) Let G be a group and H be a subgroup of G such that $a b a^{-1} b^{-1} \in H$ for all $a, b \in G$. Prove that H is a normal subgroup of G and the quotient group $\frac{G}{H}$ is commutative.
4. (a) Prove that an infinite cyclic group is isomorphic to the
$8 \times 1=8$
4

4

4

4
(b) $(G, 0)$ and $\left(G^{\prime}, *\right)$ are two groups. $f: G \rightarrow G^{\prime}$ is an onto homomorphism. Prove that if H is a normal subgroup of $(G, 0)$, then $f(H)$ is also a normal subgroup of $\left(G^{\prime}, *\right)$.

Section- III

(Boolean Algebra)

Answer any one question from the following:

5. (a) Let $f(x, y, z)$ be a Boolean function. f is such that it assumes the value 1 if only one of the variables takes the value 0 . Construct a truth table of f and hence write f in DNF and draw a switching circuit corresponding to the DNF.

(b) Prove that for any two elements a, b of a Boolean algebra $(B,+, \cdot),, a+b=0 \Rightarrow a=0$ and $b=0$.
6. (a) Does there exist a Boolean algebra with only three elements?
(b) In a Boolean algebra ($B,+, \cdot,,^{\prime}$), prove that $a+b=a+c$ and $a . b=a . c$ imply $b=c$.
(c) Find the Boolean function which represents the circuit and 3 simplify the function, if possible.

Group- B

(Differential Equations-III)
Answer any one question from the following:
$15 \times 1=15$
7. (a) Solve the equation

$$
\frac{d^{2} y}{d x^{2}}+(x-1)^{2} \frac{d y}{d x}-4(x-1) y=0
$$

in series about the ordinary point $x=1$
(b) Find the Laplace transform of
$g(t)=\left\{\begin{array}{cl}0, & 0<t<5 \\ t-3, & t>5 .\end{array}\right.$
(c) Solve the initial value problem using Laplace transform:
$y^{\prime}-2 y=e^{5 t}, y(0)=3$.
8. (a) Obtain a power series solution of the initial value problem $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0, \quad y(0)=0, y^{\prime}(0)=1$ in powers of x.

B.Sc./Part-III/Hons/MTMA-VIII/2016

(b) Using convolution theorem, find $\mathcal{L}^{-1}(L(t))$ where $L(t)=\frac{1}{s^{2}+5 s+6}$.
(c) Apply Laplace transform to solve:

$$
\begin{gathered}
y^{\prime \prime}+4 y^{\prime}+5 y=e^{t} \\
y(0)=1 \\
y^{\prime}(0)=2 .
\end{gathered}
$$

Group- C

(Tensor Calculus)
Answer any one question from the following:
f. 9. (a) Prove that components of contravariant and covariant vectors 2 in Euclidean space of dimension n are same.
(b) Define Riemannian space. Show that the fundamental metric tensor $g_{i j}$ is a symmetric $(0,2)$ type tensor.
(c) Prove that $\left\{\begin{array}{c}i \\ i \\ j\end{array}\right\}=\frac{\partial}{\partial x^{j}}(\log \sqrt{g})$, where $g=\left|g_{i j}\right|$.
10. (a) Write the cosine expression of angle between two non-null vectors A^{i} and B^{i} in Riemannian space. When they are orthogonal?
(b) If A^{i} and B^{i} are two non-null vectors such $g_{i j} \mathrm{U}^{i} \mathrm{U}^{j}=g_{i j} \mathrm{~V}^{i} \mathrm{~V}^{j}$ where $\mathrm{U}^{i}=\mathrm{A}^{i}+\mathrm{B}^{i}$ and $\mathrm{V}^{i}=\mathrm{A}^{i}-\mathrm{B}^{i}$. Show that A^{i} and B^{i} are orthogonal.
(c) Prove that Christoffel symbols are not tensor.
(d) Define covariant differentiation of a vector. Give geometric interpretation of it.

