West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2015 PART-II
 MATHEMATICS - Honours Paper- IV

Duration : 4 Hours

Full Marks : 100
The figures in the margin indicate full marks.
Group - A
Answer any two questions.

1. a) Show that the pole of any tangent to the hyperbola $x y=c^{2}$ with respect to the circle $x^{2}+y^{2}=a^{2}$ lies on concentric and similar hyperbola. 5
b) Define chord of contact of tangents. Find the equation of the pair of tangents from an external point (x_{1}, y_{1}) to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1.2+3$
2. a) Find the equation of the sphere touching the three coordinate planes. 5
b) Prove that the conditions that the lines of section of the plane $u x+m y+n z=0$ and the cones $a x^{2}+b y^{2}+c z^{2}=0, f y z+g z x+h x y=0$ may be coincident are $\frac{b n^{2}+c m^{2}}{f m n}=\frac{c l^{2}+a n^{2}}{g n l}=\frac{a m^{2}+b l^{2}}{h l m}$.
3. a) Show that the enveloping cylinder of the conicoid $a x^{2}+b y^{2}+c z^{2}=1$ with generators perpendicular to the z-axis meets the plane $z=0$ in a pair of straight lines.
b) Reduce the equation $x^{2}-y^{2}+4 y z+4 z x-6 x-2 y-8 z+5=0$ to its canonical form and examine the nature of the conic it represents. 5 Group - B
Answer any one question.
4. a) Find the eigen values and the corresponding eigenfunction of the eigenvalue problem

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\lambda y=0,(\lambda>0) \text { satisfying the boundary conditions } \tag{5}
\end{equation*}
$$ $y^{\prime}(1)=0$ and $y^{\prime}\left(e^{2 \pi}\right)=0$.

b) Solve : $2 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}-4 x=2 t$,

$$
\begin{equation*}
2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+4 \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=0 \tag{5}
\end{equation*}
$$

5. a) Find the equation of the integral surface given by the differential equation
$2 y(z-3) p+(2 x-z) q=y(2 x-3)$, which passes through the circle $z=0$, $x^{2}+y^{2}=2 x$.
b) Apply Charpit's method to find the complete integral of $p x+q y=p q$.

Group - C

Answer either Q. 6 or Q. 7 and either Q. No. 8 or Q. No. 9. $13+12=25$
6. a) Prove that every extreme point of the convex set of all feasible solutions of the system $A x=b, x \geq 0$ corresponds to a basic feasible solution of the system.
b) Show that $x_{1}=2, x_{2}=1, x_{3}=3$ is feasible solution of the system of equations
$4 x_{1}+2 x_{2}-3 x_{3}=1$
$6 x_{1}+4 x_{2}-5 x_{3}=1$
Reduce it to a basic feasible solution of the system.
7. a) Find the dual of the following primal problem :

Maximize

$$
\begin{aligned}
& Z=2 x_{1}+3 x_{2} \\
& -x_{1}+2 x_{2} \leq 4 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}+3 x_{2} \leq 9
\end{aligned}
$$

subject to
and $x_{1}, x_{2} \geq 0$
By solving the dual find the optimal solution of the primal problem.
b) Solve graphically the following rectangular game with pay-off matrix :

B
$A\left[\begin{array}{rrrr}3 & 2 & -1 & 4 \\ 2 & 5 & 6 & -2\end{array}\right]$
8. a) Find an optimal solution of the following minimization problem :

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	19	20	50	10	7
O_{2}	70	30	40	60	9
O_{3}	40	8	70	20	18
	5	8	7	14	

b) Reduce the following pay-off matrix to a 2×2 matrix by dominance property and then solve the game problem, where A is the maximising player and B is the minimising player :

$$
A\left[\begin{array}{rrrrr}
2 & 2 & 1 & -2 & -3 \\
4 & 3 & 4 & -2 & 0 \\
5 & 1 & 2 & 5 & 6 \\
1 & 2 & 1 & -3 & 3
\end{array}\right]
$$

9. a) Solve following travelling salesman problem :

	A	B	C	C
A	\propto	12	10	15
B	16	\propto	11	13
	C	17	18	\propto
	20			
	13	11	18	\propto

b) Solve the following assignment problem.

	I	II	III
A	11	23	16
B	22	25	19
C	29	13	27

Group - D
Answer any three questions:
10. a) A particle describes a path, which is nearly a circle under the action of a central force $\phi(u),\left(u=\frac{1}{r}\right)$ with the centre at the centre of the circle. Find the condition that the motion may be stable. Also find the apsidal angle in this case.
b) A smooth parabolic tube is placed, vertex downwards, in a vertical plane. A particle slides down the tube from rest under the influence of gravity. Prove that, in any position, the reaction of the tube is $\frac{2 w(h+a)}{\rho}$, where w is the weight of the particle, ρ is the radius of curvature, $4 a$ is the latus rectum and h is the original height of the particle above the vertex.
11. a) Find the radial and cross radial components of velocity and acceleration of a particle moving in a plane in polar coordinate.
b) A particle rests in equilibrium under the attraction of two centres of forces which attract directly as the distance, their attraction per unit of mass at unit distance being μ and μ^{\prime}, the particle slightly displaced towards one of them. Show that the time of small oscillation is $\frac{2 \mu}{\sqrt{\mu+\mu^{\prime}}} \cdot 8$
12. a) Find the law of force to the pole when the path is the cardioide $r=a(1-\cos \theta)$ and prove that if F be the force at the apse and V be the velocity then $3 V^{2}=4 a F$.
b) A straight smooth tube turns about one extremity O in a horizontal plane with uniform angular velocity ω. Originally a particle is placed in the tube at a distance a from O and projected towards O with a velocity V. Show that if, $\omega<\frac{V}{a}$, the particle will reach O in time $\frac{1}{\omega} \tanh ^{-1} \frac{a \omega}{V}$. 8
13. a) A particle is moving in a straight line with an acceleration $n^{2} \times$ (distance) towards a fixed point in the line, in a medium which offers a resistance proportional to velocity and is simultaneously acted on by a periodic disturbing force F cos pt per unit mass. Discuss the motion.
b) A particle moves with a central acceleration $\mu\left(r+\frac{a^{4}}{r^{3}}\right)$ being projected from an apse at a distance a with a velocity $2 \sqrt{\mu} a$. Prove that it describes the curve $r^{2}(2+\cos \sqrt{3} \theta)=3 a^{2}$.
14. a) A heavy particle slides down a rough cycloid whose base is horizontal and vertex downwards. Show that if it starts from rest at the cusp and comes to rest at the vertex, then $\mu^{2} e^{\mu \pi}=1$. 7
b) If the velocity of a body in an elliptic orbit, major axis $2 a$, is the same at a certain point P, whether the orbit being described in a periodic time T about one focus S or in periodic time T^{\prime} about other focus S^{\prime}, then prove that

$$
\begin{equation*}
S P=\frac{2 a T^{\prime}}{T+T^{\prime}} \text { and } S^{\prime} P=\frac{2 a T}{T+T^{\prime}} \tag{8}
\end{equation*}
$$

