MTMA(HN)-04

West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2015 PART-II

MATHEMATICS – Honours

Paper- IV

Duration : 4 Hours

1.

2.

3.

4.

Full Marks : 100

The figures in the margin indicate full marks.

Group - A

Answer any two questions.

 $2 \times 10 = 20$

- a) Show that the pole of any tangent to the hyperbola xy = c² with respect to the circle x² + y² = a² lies on concentric and similar hyperbola. 5
 b) Define chord of contact of tangents. Find the equation of the pair of
 - beine chord of contact of tangents. Find the equation of the pair of tangents from an external point (x_1, y_1) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 2 + 3
 - a) Find the equation of the sphere touching the three coordinate planes. 5 b) Prove that the conditions that the lines of section of the plane lx+my+nz=0 and the cones $ax^2+by^2+cz^2=0$, fyz+gzx+hxy=0 may be coincident are $\frac{bn^2+cm^2}{fmn} = \frac{cl^2+an^2}{gnl} = \frac{am^2+bl^2}{hlm}$. 5
 - a) Show that the enveloping cylinder of the conicoid $ax^2 + by^2 + cz^2 = 1$ with generators perpendicular to the z-axis meets the plane z = 0 in a pair of straight lines. 5
 - Reduce the equation $x^2 y^2 + 4yz + 4zx 6x 2y 8z + 5 = 0$ to its canonical form and examine the nature of the conic it represents. 5 Group - B
- Answer any one question. $1 \times 10 = 10$ a) Find the eigen values and the corresponding eigenfunction of the eigenvalue problem

 $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + \lambda y = 0$, ($\lambda > 0$) satisfying the boundary conditions

b)

b)

Solve: $2\frac{d^2x}{dt^2} - \frac{dy}{dt} - 4x = 2t,$ $2\frac{dx}{dt} + 4\frac{dy}{dt} - 3y = 0.$

y'(1) = 0 and $y'(e^{2\pi}) = 0$.

SUB.-B.A./B.Sc.(HN)-MTMA-6038

[Turn over

5

5

- Find the equation of the integral surface given by the differential 5. a) equation
 - 2y(z-3)p+(2x-z)q = y(2x-3), which passes through the circle z = 0, $x^2 + y^2 = 2x$. 5
 - Apply Charpit's method to find the complete integral of px+qy = pq. 5 b) Group - C
- 6. a)

b)

b)

Answer either Q. 6 or Q. 7 and either Q. No. 8 or Q. No. 9. 13 + 12 = 25Prove that every extreme point of the convex set of all feasible solutions of the system Ax=b, $x \ge 0$ corresponds to a basic feasible solution of 6 the system.

Show that $x_1 = 2$, $x_2 = 1$, $x_3 = 3$ is feasible solution of the system of equations

7

6

 $4x_1 + 2x_2 - 3x_3 = 1$

$$6x_1 + 4x_2 - 5x_3 = 1$$

a)

7.

Reduce it to a basic feasible solution of the system. Find the dual of the following primal problem :

Maximize $Z = 2x_1 + 3x_2$ subject to $-x_1 + 2x_2 \le 4$ $x_1 + x_2 \le 6$ $x_1 + 3x_2 \le 9$ and

$$x_1, x_2 \ge 0$$

By solving the dual find the optimal solution of the primal problem. 7 Solve graphically the following rectangular game with pay-off matrix : 6

B

1	3	2	-1	4	
1	2	5	6	4	

Find an optimal solution of the following minimization problem : 8. a)

	D ₁	D ₂	D3	D ₄	
01	19	20	50	10	7
02	70	30	40	60	9
03	40	8	70	20	18
	5	8	7	14	

SUB.-B.A./B.Sc.(HN)-MTMA-6038

MTMA(HN)-04

b)

Reduce the following pay-off matrix to a 2×2 matrix by dominance property and then solve the game problem, where A is the maximising player and B is the minimising player : 6

			B			
-	2	2	1	-2	-3]
	4	3	4	-2	-3 0 6 3	
1	5	1	2	5	6	1
	1	2	1	-3	3	

3

9. a) Solve following travelling salesman problem :

the friends in the second of

	A	В	C	D
A	x	12	10.	15
B	16	x	11	13
C	17	18	x	20
D	13	11	18	x

Solve the following assignment problem.

	Ι	II .	III
Α	11	23	16
В	22	25	19
С	29	13	27
	Gro	oup - l	D

Answer any three questions :

10. a)

b)

A particle describes a path, which is nearly a circle under the action of a central force $\phi(u)$, $(u = \frac{1}{r})$ with the centre at the centre of the circle. Find the condition that the motion may be stable. Also find the apsidal angle in this case.

b) A smooth parabolic tube is placed, vertex downwards, in a vertical plane. A particle slides down the tube from rest under the influence of gravity. Prove that, in any position, the reaction of the tube is $\frac{2w (h+a)}{\rho}$, where w is the weight of the particle, ρ is the radius of curvature, 4a is the

latus rectum and h is the original height of the particle above the vertex.

11. a) Find the radial and cross radial components of velocity and acceleration of a particle moving in a plane in polar coordinate. 7

SUB.-B.A./B.Sc.(HN)-MTMA-6038

[Turn over

7

 $3 \times 15 = 45$

6

MTMA(HN)-04

b)

b)

a)

b)

b)

12.

13.

A particle rests in equilibrium under the attraction of two centres of forces which attract directly as the distance, their attraction per unit of mass at unit distance being μ and μ' , the particle slightly displaced towards one of them. Show that the time of small oscillation is $\frac{2\mu}{\sqrt{\mu+\mu'}}$. 8

- a) Find the law of force to the pole when the path is the cardioide $r = a (1 \cos \theta)$ and prove that if F be the force at the apse and V be the velocity then $3V^2 = 4aF$.
 - A straight smooth tube turns about one extremity O in a horizontal plane with uniform angular velocity ω . Originally a particle is placed in the tube at a distance a from O and projected towards O with a velocity V. Show that if, $\omega < \frac{V}{a}$, the particle will reach O in time $\frac{1}{\omega} \tanh^{-1} \frac{a\omega}{V}$. 8
 - A particle is moving in a straight line with an acceleration $n^2 \times (distance)$ towards a fixed point in the line, in a medium which offers a resistance proportional to velocity and is simultaneously acted on by a periodic disturbing force $F \cos pt$ per unit mass. Discuss the motion. 7
 - A particle moves with a central acceleration $\mu\left(r + \frac{a^4}{r^3}\right)$ being

projected from an apse at a distance *a* with a velocity $2\sqrt{\mu} a$. Prove that it describes the curve $r^2(2+\cos\sqrt{3} \theta)=3a^2$.

- 14. a) A heavy particle slides down a rough cycloid whose base is horizontal and vertex downwards. Show that if it starts from rest at the cusp and comes to rest at the vertex, then $\mu^2 e^{\mu\pi} = 1$. 7
 - If the velocity of a body in an elliptic orbit, major axis 2a, is the same at a certain point P, whether the orbit being described in a periodic time T about one focus S or in periodic time T' about other focus S', then prove that

8

$$SP = \frac{2aT'}{T+T'}$$
 and $S'P = \frac{2aT}{T+T'}$.

SUB.-B.A./B.Sc.(HN)-MTMA-6038

4