West Bengal State University B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015 PART – I

MATHEMATICS - HONOURS

Paper - II

Duration : 4 Hours]

[Full Marks: 100

 $5 \times 5 = 25$

The figures in the margin indicate full marks.

GROUP - A

(Marks : 25) Answer any *five* questions.

1.	al	State well ordering property of natural numbers and the principle of	f
		mathematical induction. Verify whether the well-ordering property is true of	n
		Z, the set of integers ? 1+2	2
	b)	Prove that the set IN is not bounded above.	2
2.	a)	State Cauchy's general principle of convergence and use it to prove that the	e
		sequence $\{x_n\}$ is convergent, where $x_n = 1 + \frac{1}{2!} + \frac{1}{3!} + + \frac{1}{n!}$. 1+3	3
	b)	State Cauchy's first theorem on limits.	1
3.	a)	Is the density property of an ordered field implies the order of completeness	?
		Justify your answer. 1+:	2
	b)	Find Sup A, where $A = \{x \in \mathbb{R} : 3x^2 + 8x - 3 < 0\}.$	1
	c)	Prove that l is an interior point of $S \in R$ implies l is a limit point of S .	1
SUE	B-B.A	/B.Sc.(HN)-MTMA-2043 [Turn ove	r

4. a) State Cauchy's second limit theorem on sequence. Is the converse of the Cauchy's second limit theorem true? Justify your answer. 1 + 1

b) Using Cauchy's first limit theorem prove that $\begin{cases} \frac{1+\sqrt[2]{2}+\sqrt[3]{3}+\ldots+\sqrt[n]{n}}{n} \end{cases}$

converges to 1.

c) Give an example of two non-convergent sequences $\{x_n\}$ and $\{y_n\}$ such that $\{x_n + y_n\}$ is convergent.

2

5

2

2

- 5. a) Prove that every infinite subset of a denumerable set is denumerable. 3
 - b) Give examples one each of a denumerable set and a non-denumerable set. 2
- 6. State and prove Bolzano-Weierstrass theorem on accumulation points.

7.

a)

- Let $f: S \to \mathbb{R}$, $S \in \mathbb{R}$ be a function, c be a limit point of S. Let $\lim_{x \to c} f(x) = l$. Prove that for every sequence $\{x_n\}$ in $S - \{c\}$ converging to c, the sequence $\{f(x_n)\}$ converges to l.
- b) Prove that $\lim_{x \to 0^+} \sqrt{x} \sin \frac{1}{x} = 0.$

c) Evaluate $\lim_{x \to 3} [x] - [\frac{x}{3}]$, where [x] is the greatest integer not exceeding x.

8. a) Let $f: S \to \mathbb{R}$, $S \in \mathbb{R}$ be continuous on $S, c \in S$ and f(c) < 0. Then prove that there exists a neighbourhood of $c, N_{\delta}(c), \delta > 0$, such that

 $f(x) \cdot f(c) > 0, \forall x \in N_{\delta}(c).$

- b) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and U be an open set in \mathbb{R} . Prove that $f^{-1}(U)$ is also an open set in \mathbb{R} . 2
- c) Give an example of a function $f: [0, 1] \rightarrow \mathbb{R}$ such that f is not continuous but |f| is continuous.

SUB-B.A/B.Sc.(HN)-MTMA-2043

3

1

 $2 \times 4 = 8$

 $3 \times 4 = 12$

2

a) Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 2x & \text{, when } x \in Q \\ 1-x & \text{, when } x \in \mathbb{R} - Q \end{cases}$$

is continuous at $x = \frac{y}{3}$ and discontinuous at all other points.

3

- b) Give an example of a function f: [0, 1] → R such that f is continuous but not monotone on [0, 1].
- c) Give an example of discontinuity of second kind.

GROUP - **B**

(Marks: 20)

10. Answer any two of the following questions :

a) If
$$I_{m,n} = \int_{0}^{\infty} x^{m} (1-x)^{n} dx (m, n \in \mathbb{N})$$
, prove that

(m+n+1) $I_{m,n} = n I_{m,n-1}$ and hence find the value of $I_{m,n}$.

b) Prove that

$$I_{m,n} = \int \sin^{m} x \cos^{n} x \, dx = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} I_{m,n-2}.$$

c) Show that
$$2^{2m-1} \Gamma(m) \Gamma(m+\frac{1}{2}) = \sqrt{\pi} \Gamma(2m) \quad m > 0$$
.

11. Answer any three of the following questions :

- a) Find the pedal equation of the cardioid $r = a(1 + \cos \theta)$.
- b) Determine the rectilinear asymptotes, if any, of the curve $y = x + \log x$. 4
- c) If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$, then show that $\rho_1^{-2/3} + \rho_2^{-2/3} = (2a)^{-2/3}$.

d) Find the envelopes of the family of circles $x^2 + y^2 - 2ax - 2by + b^2 = 0$, where a, b are parameters, whose centres lie on the parabola $y^2 = 4ax$.

e) Find if there is any point of inflexion on the curve $y-3=6(x-2)^5$.

SUB-B.A/B.Sc.(HN)-MTMA-2043

[Turn over

GROUP - C

4

(Marks: 30)

Answer any three of the following questions. $3 \times 10 = 30$

12. a) Define orthogonal trajectory. Find the orthogonal trajectories of the family of curves $y^2 = 4ax$, a being parameter a > 0. 1 + 4

b) Solve
$$\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$$
.

c) Find an integrating factor of the differential equation

$$(2xy^{4}e^{y} + 2xy^{3} + y) dx + (x^{2}y^{4}e^{y} - x^{2}y^{2} - 3x) dy = 0.$$

13. a) Transform the given equation to Clairaut's equation by putting $x^2 = u$ and $y^2 = v$ and hence find the general and singular solutions :

$$(px-y)(x-py) = 2p$$
, where $p = \frac{dy}{dx}$. $1+2+2$

b) Solve:
$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2.$$
 5

14. a) Solve:
$$\frac{d^2 y}{dx^2} - y = e^x \sin \frac{x}{2}$$
. 5

b) Find the orthogonal trajectories of the family of coaxial circles $x^2 + y^2 + 2gx + c = 0$, where g is a parameter and c is constant.

15. a) Solve:
$$x^4 \frac{d^3y}{dx^3} + 3x^3 \frac{d^2y}{dx^2} - 2x^2 \frac{dy}{dx} + 2xy = \log x$$
. 5

b) Solve by the method of undetermined coefficients the differential equation $(D^2 - 3D + 2)y = 14 \sin 2x - 18 \cos 2x.$

SUB-B.A/B.Sc.(HN)-MTMA-2043

5

16. a) Solve
$$\sin^2 x \frac{d^2 y}{dx^2} = 2y$$
, given that $\cot x$ is one of the solutions. 5

b) Solve $\frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2} \sin 2x$ by reducing it to normal form.

17. a)

2

Solve, by the method of variation of parameters

$$c^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = x^{2}e^{x}.$$
 5

b) Solve
$$x \frac{d^2 y}{dx^2} + (x-2) \frac{dy}{dx} - 2y = x^3$$
, by the method of operational factors. 5

GROUP - D

(Marks: 25)

Answer any *five* of the following questions. $5 \times 5 = 25$

- 18. Show, by vector method, that the straight line joining the mid-points of two non-parallel sides of a trapezium are parallel to the parallel sides and half of their sum in length.
- 19. Prove that the necessary and sufficient condition for three distinct points with position vectors \vec{a} , \vec{b} , \vec{c} to be collinear is that there exist three scalars x, y, z not all zero such that $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$ and x + y + z = 0.
- 20. a) If $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are three vectors such that $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = \vec{0}$ and $|\vec{\alpha}| = 3$, $|\vec{\beta}| = 5$, $|\vec{\gamma}| = 7$, then find the angle between $\vec{\alpha}$ and $\vec{\beta}$. 3
 - b) Find the unit vector which is perpendicular to the vectors $3\vec{i} 2\vec{j} \vec{k}$ and $2\vec{i} - \vec{j} - 3\vec{k}$.

SUB-B.A/B.Sc.(HN)-MTMA-2043

[Turn over

- 21. a) If $\vec{\alpha} \times \vec{\beta} + \vec{\beta} \times \vec{\gamma} + \vec{\gamma} \times \vec{\alpha} = \vec{0}$ then show that $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar.
 - b) Find the vector equation of the plane passing through the origin and parallel to the vectors $2\vec{i} + 3\vec{j} + 4\vec{k}$ and $4\vec{i} - 5\vec{j} + 4\vec{k}$.
- 22. a) A particle acted on by two constant forces $\vec{i} + \vec{j} 3\vec{k}$ and $3\vec{i} + \vec{j} \vec{k}$ is displaced from the point $\vec{i} + 2\vec{j} + 3\vec{k}$ to the point $3\vec{i} + 4\vec{j} + 2\vec{k}$. Find the total work done.
 - b) Find the moment of the force $4\vec{i} + 2\vec{j} + \vec{k}$ acting at a point $5\vec{i} + 2\vec{j} + 4\vec{k}$ about the point $3\vec{i} - \vec{j} + 3\vec{k}$.

5

3

2

- 23. Show that $[\overrightarrow{\beta} \times \overrightarrow{\gamma} \quad \overrightarrow{\gamma} \times \overrightarrow{\alpha} \quad \overrightarrow{\alpha} \times \overrightarrow{\beta}] = [\overrightarrow{\alpha} \quad \overrightarrow{\beta} \quad \overrightarrow{\gamma}]^2$.
- 24. a) Find a simplified from of $\vec{\nabla} \times (\vec{r} f(r))$ where f(r) is differentiable and $r = |\vec{r}|$.

b) Show that the vector $\frac{\vec{r}}{r^3}$, where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ is both irrotational

and solenoidal.

- 25. a) Find the directional derivative of the function f(x, y, z) = yz + zx + xy in the direction of the vector $\vec{u} = \vec{i} + 2\vec{j} + 2\vec{k}$ at the point (1, 2, 0). 3
 - b) Prove that $div(grad f) = \nabla^2 f$.

SUB-B.A/B.Sc.(HN)-MTMA-2043

6. a) If
$$\vec{r} = a \, \vec{i} \cos t + a \, \vec{j} \sin t + bt \, \vec{k}$$
 then show that $[\vec{r} \quad \vec{r} \quad \vec{r} \quad \vec{r}] = a^2 b$. 3
b) If \vec{w} is a constant vector, \vec{r} and \vec{s} are functions of a scalar variable t
and if $\frac{d\vec{r}}{dt} = \vec{w} \times \vec{r}$ and $\frac{d\vec{s}}{dt} = \vec{w} \times \vec{s}$ then show that
 $\frac{d}{dt} (\vec{r} \times \vec{s}) = \vec{w} \times (\vec{r} \times \vec{s})$.

7

SUB-B.A/B.Sc.(HN)-MTMA-2043