West Bengal State University B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2015 PART - I
 MATHEMATICS - HONOURS
 Paper - II

Duration: 4 Hours]
[Full Marks: 100

The figures in the margin indicate full marks.

GROUP - A

(Marks: 25)
Answer any five questions.

1. a) State well ordering property of natural numbers and the principle of mathematical induction. Verify whether the well-ordering property is true on Z, the set of integers ?
$1+2$
b) Prove that the set \mathbb{N} is not bounded above.
2. a) State Cauchy's general principle of convergence and use it to prove that the sequence $\left\{x_{n}\right\}$ is convergent, where $x_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}$.
b) State Cauchy's first theorem on limits.
3. a) Is the density property of an ordered field implies the order of completeness ? Justify your answer.
b) Find $\operatorname{Sup} A$, where $A=\left\{x \in \mathbb{R}: 3 x^{2}+8 x-3<0\right\}$. 1
c) Prove that l is an interior point of $S \in R$ implies l is a limit point of S.
4. a) State Cauchy's second limit theorem on sequence. Is the converse of the Cauchy's second limit theorem true ? Justify your answer. $1+1$
b) Using Cauchy's first limit theorem prove that $\left\{\frac{1+\sqrt[2]{2}+\sqrt[3]{3}+\ldots+\sqrt[n]{n}}{n}\right\}$ converges to 1 .
c) Give an example of two non-convergent sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\left\{x_{n}+y_{n}\right\}$ is convergent.
5. a) Prove that every infinite subset of a denumerable set is denumerable.
b) Give examples one each of a denumerable set and a non-denumerable set. 2
6. State and prove Bolzano-Weierstrass theorem on accumulation points.
7. a) Let $f: S \rightarrow \mathbb{R}, S \in R$ be a function, c be a limit point of S. Let $\lim _{x \rightarrow c} f(x)=l$. Prove that for every sequence $\left\{x_{n}\right\}$ in $S-\{c\}$ converging to c, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to l.
b) Prove that $\lim _{x \rightarrow 0+} \sqrt{x} \sin \frac{1}{x}=0$.
c) Evaluate $\lim _{x \rightarrow 3}[x]-\left[\frac{x}{3}\right]$, where $[x]$ is the greatest integer not exceeding x.
8. a) Let $f: S \rightarrow \mathbb{R}, S \in \mathbb{R}$ be continuous on $S, c \in S$ and $f(c)<0$. Then prove that there exists a neighbourhood of $c, N_{\delta}(c), \delta>0$, such that $f(x) . f(c)>0, \quad \forall x \in N_{\delta}(c)$.
b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and U be an open set in \mathbb{R}. Prove that $f^{-1}(U)$ is also an open set in \mathbb{R}.
c) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ such that f is not continuous but $|f|$ is continuous.
9. a) Prove th t e function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}2 x, & \text { when } x \in Q \\ 1-x, & \text { when } x \in \mathbb{R}-Q\end{cases}
$$

is continuous at $x=\frac{\boldsymbol{\gamma}}{3}$ and discontinuous at all other points.
b) Give an example of a func ion $f:[0,1] \rightarrow \mathbb{R}$ such that f is continuous but not monotone on $[0,1]$.
c) Give an examnle of discontinuity of second kind.

GROUP - B
(Marks : 20)
10. Answer any two of the following questions :
a) If $I_{m, n}=\int_{0}^{1} x^{m}(1-x)^{n} \mathrm{~d} x(m, n \in \mathbb{N})$, prove that
$(m+n+1) I_{m, n}=n I_{m, n-1}$ and hence find the value of $I_{m, n}$.
b) Prove that

$$
I_{m, n}=\int \sin ^{m} x \cos ^{n} x \mathrm{~d} x=\frac{\sin ^{m+1} x \cos ^{n-1} x}{m+n}+\frac{n-1}{m+n} I_{m, n-2}
$$

c) Show that $2^{2 m-1} \Gamma(m) \Gamma\left(m+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 m) \quad m>0$.
11. Answer any three of the following questions :
a) Find the pedal equation of the cardioid $r=a(1+\cos \theta)$.
b) Determine the rectilinear asymptotes, if any, of the curve $y=x+\log x$. $\quad 4$
c) If ρ_{1} and ρ_{2} be the radii of curvature at the ends of a focal chord of the parabola $y^{2}=4 a x$, then show that $\rho_{1}^{-2 / 3}+\rho_{2}^{-2 / 3}=(2 a)^{-2 / 3}$.
d) Find the envelopes of the family of circles $x^{2}+y^{2}-2 a x-2 b y+b^{2}=0$, where a, b are parameters, whose centres lie on the parabola $y^{2}=4 a x$.
e) Find if there is any point of inflexion on the curve $y-3=6(x-2)^{5}$.

GROUP - C
 (Marks: 30)

Answer any three of the following questions. $3 \times 10=30$
12. a) Define orthogonal trajectory. Find the orthogonal trajectories of the family of curves $y^{2}=4 a x, a$ being parameter $a>0$.
b) Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x}{1-x^{2}} y=x \sqrt{y}$.
c) Find an integrating factor of the differential equation

$$
\begin{equation*}
\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) \mathrm{d} y=0 \tag{2}
\end{equation*}
$$

13. a) Transform the given equation to Clairaut's equation by putting $x^{2}=u$ and $y^{2}=v$ and hence find the general and singular solutions :

$$
(p x-y)(x-p y)=2 p, \text { where } p=\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

b) Solve : $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$.
14. a) Solve : $\frac{\mathrm{d}^{2} y}{d x^{2}}-y=e^{x} \sin \frac{x}{2}$.
b) Find the orthogonal trajectories of the family of coaxial circles

$$
x^{2}+y^{2}+2 g x+c=0, \text { where } g \text { is a parameter and } c \text { is constant. }
$$

15. a) Solve : $x^{4} \frac{\mathrm{~d}^{3} y}{d x^{3}}+3 x^{3} \frac{\mathrm{~d}^{2} y}{d x^{2}}-2 x^{2} \frac{\mathrm{~d} y}{d x}+2 x y=\log x$.
b) Solve by the method of undetermined coefficients the differential equation

$$
\left(D^{2}-3 D+2\right) y=14 \sin 2 x-18 \cos 2 x
$$

16. a) Solve $\sin ^{2} x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 y$, given that $\cot x$ is one of the solutions.
b) Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(4 x^{2}-1\right) y=-3 e^{x^{2}} \sin 2 x$ by reducing it to normal form.
17. a) Solve, by the method of variation of parameters

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=x^{2} e^{x} \tag{5}
\end{equation*}
$$

b) Solve $x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(x-2) \frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=x^{3}$, by the method of operational factors. 5

GROUP - D

(Marks: 25)
Answer any five of the following questions. $5 \times 5=25$
18. Show, by vector method, that the straight line joining the mid-points of two nonparallel sides of a trapezium are parallel to the parallel sides and half of their sum in length.
19. Prove that the necessary and sufficient condition for three distinct points with position vectors $\vec{a}, \vec{b}, \vec{c}$ to be collinear is that there exist three scalars x, y, z not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$ and $x+y+z=0$.
20. a) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are three vectors such that $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\overrightarrow{0}$ and $|\vec{\alpha}|=3$, $|\vec{\beta}|=5,|\vec{\gamma}|=7$, then find the angle between $\vec{\alpha}$ and $\vec{\beta}$. 3
b) Find the unit vector which is perpendicular to the vectors $3 \vec{i}-2 \vec{j}-\vec{k}$ and $2 \vec{i}-\vec{j}-3 \vec{k}$.
21. a) If $\vec{\alpha} \times \vec{\beta}+\vec{\beta} \times \vec{\gamma}+\vec{\gamma} \times \vec{\alpha}=\overrightarrow{0}$ then show that $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are coplanar.
b) Find the vector equation of the plane passing through the origin and parallel to the vectors $2 \vec{i}+3 \vec{j}+4 \vec{k}$ and $4 \vec{i}-5 \vec{j}+4 \vec{k}$.
22. a) A particle acted on by two constant forces $\vec{i}+\vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j}-\vec{k}$ is displaced from the point $\vec{i}+2 \vec{j}+3 \vec{k}$ to the point $3 \vec{i}+4 \vec{j}+2 \vec{k}$. Find the total work done.
b) Find the moment of the force $4 \vec{i}+2 \vec{j}+\vec{k}$ acting at a point $5 \vec{i}+2 \vec{j}+4 \vec{k}$ about the point $3 \vec{i}-\vec{j}+3 \vec{k}$.
23. Show that $\left[\begin{array}{lll}\vec{\beta} \times \vec{\gamma} & \vec{\gamma} \times \vec{\alpha} & \vec{\alpha} \times \vec{\beta}\end{array}\right]=\left[\begin{array}{lll}\vec{\alpha} & \vec{\beta} & \vec{\gamma}\end{array}\right]^{2}$.
24. a) Find a simplified from of $\vec{\nabla} \times(\vec{r} f(r))$ where $f(r)$ is differentiable and $r=|\vec{r}|$.
b) Show that the vector $\frac{\vec{r}}{r^{3}}$, where $\vec{r}=x \vec{i}+y \vec{j}+z \vec{k}$ is both irrotational and solenoidal.
25. a) Find the directional derivative of the function $f(x, y, z)=y z+z x+x y$ in the direction of the vector $\vec{u}=\vec{i}+2 \vec{j}+2 \vec{k}$ at the point $(1,2,0)$.
b) Prove that $\operatorname{div}(\operatorname{grad} f)=\nabla^{2} f$.

SUB-B.A/B.SC.(HN)-MTMA-2O43
26. a) If $\vec{r}=a \vec{i} \cos t+a \vec{j} \sin t+b t \vec{k}$ then show that $[\vec{r} \overrightarrow{\vec{r}} \ddot{\vec{r}}]=a^{2} b$. 3
b) If \vec{w} is a constant vector, \vec{r} and \vec{s} are functions of a scalar variable t and if $\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}=\vec{w} \times \vec{r}$ and $\frac{\mathrm{d} \vec{s}}{\mathrm{~d} t}=\vec{w} \times \vec{s}$ then show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\vec{r} \times \vec{s})=\vec{w} \times(\vec{r} \times \vec{s})
$$

