West Bengal State University
B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014

PART - III
MATHEMATICS - HONOURS
Paper - VIII (A)
aration : 2 Hours]
[Full Marks: 50
The figures in the margin indicate full marks.
(Notations used have their usual meanings.)

Group - A
Section - I
(Linear Algebra)
Answer any one question from the following.

$$
1 \times 10=10
$$

a) Let V and W be two vector spaces over a field F. When a linear mapping $T: V \rightarrow W$ is defined to be invertible ?
b) Let V and W be two vector spaces over a field F. Prove that a necessary and sufficient condition for a linear mapping $T: V \rightarrow W$ to be invertible is that T is one-to-one and onto.
c) A linear mapping $T: R^{3} \rightarrow R^{3}$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3}, x_{2}+4 x_{3}, x_{1}-x_{2}+3 x_{3}\right),\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}
$$

Find the matrix representation of T relative to the ordered basis
$(0,1,1),(1,0,1),(1,1,0)$ of R^{3}.
a) If V and W are two finite dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation then show that $\operatorname{dim} V=$ nullity of $T+\operatorname{rank}$ of $T .4$
b) Find the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, if

$$
\begin{aligned}
& T(1,0,0)=(2,3,4) \\
& T(0,1,0)=(1,5,6) \\
& \text { and } T(1,1,1)=(7,8,4)
\end{aligned}
$$

Also find its matrix representation with respect to

$$
\{(1,0,0),(0,1,0),(1,1,1)\} \text {. Is } T \text { invertible ? Justify. } \quad 2+2+2
$$

Section - II

(Modern Algebra)
Answer any one question from the following.
$1 \times 8=8$
3. a) Let H be a subgroup of a group G. Then prove that H is normal in G iff $x h x^{-1} \in H$ for all $x \in G$ and for all $h \in H$.
-b) If every cyclic subgroup of a group G be normal in G then prove that every subgroup of G is normal in G.
c) Let $(G, 0)$ and $\left(G^{\prime}, *\right)$ be two groups and let $\phi: G \rightarrow G^{\prime}$ be a homomorphism. Then prove that
i) $\quad \phi\left(e_{G}\right)=e_{G^{\prime}}$
ii) $\quad \phi\left(a^{-1}\right)=[\phi(a)]^{-1} \forall a \in G$

Let $(Q,+)$ be the group of rational numbers under addition and $\left(Q^{+}, \bullet\right)$ be the group of positive rational numbers under multiplication. Then show that $(Q,+)$ and $\left(Q^{+}, \bullet\right)$ are not isomorphic.
$1+1+1$
4. a) Let H be a subgroup of a commutative group G. Then prove that the quotient group G / H is commutative. Is the converse true ? Justify.
b) Let G be a group and H be a normal subgroup of G. Then prove that there exists an epimorphism $f: G \rightarrow G / H$ such that $\operatorname{ker} f=H$.
c) Show that any infinite cyclic group $(G, *)$ is isomorphic to the group $(\mathbb{Z},+)$.

Section - III

(Boolean Algebra)
Answer any one question from the following.
$1 \times 7=7$
5. a) Define a Boolean algebra. Prove that $P(A)$, the power set of a non-empty set A, forms a Boolean algebra with respect to the set union, intersection and complementation.
b) Find the Boolean function which represents the circuit

Find a simpler equivalent switching circuit, if any.
a) Prove that the set S of all positive divisors of 70 forms a Boolean algebra (S, \vee, \wedge, \prime), where
$a \vee b=1 . c . m$. of a, b
$a \wedge b=$ g.c.d. of a, b
$a^{\prime}=\frac{70}{a}$.
b) Draw the circuit which realises the function f given in the table :

x	y	z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Group - B

(Differential Equations-III)

Answer any one question from the following.
7. a) Solve the equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+3 y=0$ in series near the ordinary point $x=0$.
b) Using change of scale property, evaluate $L\{3 \cos 6 t-5 \sin 6 t\}$ and hence show that $L\left\{e^{-2 t}(3 \cos 6 t-5 \sin 6 t)\right\}=\frac{3(s-8)}{s^{2}+4 s+40}$.
c) Solve using Laplace transform, $y^{\prime \prime}+2 y^{\prime}+2 y=t$ given that $y(0)=y^{\prime}(0)=1$.
b) If $F(s)=\frac{1}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}(a \neq b)$, then find $f(t)$, where $f(t)=L^{-1}\{F(s)\}$.
c) Find the solution of the initial value problem $\left(D^{2}-D-2\right) y=20 \sin 2 t$, given that $y=-1, D y=2$ at $t=0$, where $D \equiv \frac{\mathrm{~d}}{\mathrm{~d} t}$.

Group - C

(Tensor Calculus)
Answer any one question from the following.
9. a) If f is an invariant, determine whether $\frac{\partial^{2} f}{\partial x^{p} \partial x^{q}}$ is a tensor.
b) If $A_{i j}^{k} B_{k}^{j l}=0$ for every $B_{k}^{j l}$, prove that $A_{i j}^{k}$ vanishes identically.
c) Show that in an n-dimensional space a covariant skew-symmetric tensor of second order has at most $\frac{1}{2} n(n-1)$ different arithmetic components. 3
10. a) Show that in a Riemannian space V_{n} of dimension n with metric tensor $g_{i j},\left\{\begin{array}{c}i \\ i j\end{array}\right\}=\frac{\partial}{\partial x^{j}}(\log \sqrt{g})$.
b) If $A_{i j}$ is a symmetric tensor then show that $A_{i j, k}$ is symmetric in i and j.
c) Line element of two neighbouring points $P\left(x^{i}\right)$ and $Q\left(x^{i}+\mathrm{d} x^{i}\right)$ in a 3-dimensional space is given by $\mathrm{d} s^{2}=\left(\mathrm{d} x^{1}\right)^{2}+2\left(\mathrm{~d} x^{2}\right)^{2}+3\left(\mathrm{~d} x^{3}\right)^{2}-2 \mathrm{~d} x^{1} \mathrm{~d} x^{2}+4 \mathrm{~d} x^{2} \mathrm{~d} x^{3}$. By this line element, does the above space form a Riemannian space ? Justify it.

