205

MTMA(HN)-08(A)

West Bengal State University

B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014

PART - III

MATHEMATICS — HONOURS

Paper - VIII (A)

uration : 2 Hours]

a)

a)

[Full Marks: 50

The figures in the margin indicate full marks. (Notations used have their usual meanings.)

Group - A Section - I

(Linear Algebra)

 $1 \times 10 = 10$ Answer any one question from the following. Let V and W be two vector spaces over a field F. When a linear mapping $T: V \rightarrow W$ is defined to be invertible ?

- Let V and W be two vector spaces over a field F. Prove that a necessary b) and sufficient condition for a linear mapping $T: V \to W$ to be invertible is 4 that T is one-to-one and onto.
- A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by c)

$$T(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, x_2 + 4x_3, x_1 - x_2 + 3x_3), (x_1, x_2, x_3) \in \mathbb{R}^{\circ}$$

Find the matrix representation of T relative to the ordered basis

(0, 1, 1), (1, 0, 1), (1, 1, 0) of \mathbb{R}^3 .

- 5
- If V and W are two finite dimensional vector spaces and $T: V \rightarrow W$ is a linear transformation then show that dim V = nullity of T + rank of T.

Find the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, if b)

T(1, 0, 0) = (2, 3, 4)

T(0, 1, 0) = (1, 5, 6)

and T(1, 1, 1) = (7, 8, 4)

Also find its matrix representation with respect to

 $\{(1, 0, 0), (0, 1, 0), (1, 1, 1)\}$. Is T invertible ? Justify. 2+2+2

MTMA(HN)-08(A)

206

Section - II

(Modern Algebra) Answer any one question from the following.

- a)
 - Let H be a subgroup of a group G. Then prove that H is normal in G iff $xhx^{-1} \in H$ for all $x \in G$ and for all $h \in H$.
 - If every cyclic subgroup of a group G be normal in G then prove that ·b) every subgroup of G is normal in G. 2 c)
 - Let (G, o) and (G', *) be two groups and let $\phi: G \to G'$ be a homomorphism. Then prove that
 - i) $\phi(e_G) = e_{G'}$
 - $\phi(a^{-1}) = [\phi(a)]^{-1} \quad \forall a \in G$ ii)

Let (Q,+) be the group of rational numbers under addition and (Q^+, \cdot) be the group of positive rational numbers under multiplication. Then show that (Q,+) and (Q^+,\cdot) are not isomorphic. 1 + 1 + 1

- Let H be a subgroup of a commutative group G. Then prove that the quotient group G/H is commutative. Is the converse true ? Justify. 3
- Let G be a group and H be a normal subgroup of G. Then prove that there exists an epimorphism $f: G \rightarrow G/H$ such that kerf = H. 3
- Show that any infinite cyclic group (G, *) is isomorphic to the group (Z, +). 2

Section - III

(Boolean Algebra)

Answer any one question from the following.

- Define a Boolean algebra. Prove that P(A), the power set of a non-empty set A, forms a Boolean algebra with respect to the set union, intersection and complementation. 1 + 3
- b)

a)

Find the Boolean function which represents the circuit

Find a simpler equivalent switching circuit, if any.

3

 $1 \times 7 = 7$

 $1 \times 8 = 8$

3

3.

4.

5.

a)

b)

c)

MTMA(HN)-08(A)

4

3

Prove that the set S of all positive divisors of 70 forms a Boolean algebra

207

 $(S, \lor, \land, ')$, where $a \lor b = 1.c.m.$ of a, b $a \land b = g.c.d.$ of a, b

$$a'=\frac{70}{a}.$$

b)

a)

6

7.

8.

Draw the circuit which realises the function f given in the table :

1

y	Z	f
0	0	0
0	1	0
1	0	0
1	1	1
0	0	1
0	1	0
1	0	1
1	1	1

Group – B

(Differential Equations-III) Answer any one question from the following. $1 \times 15 = 15$ Solve the equation $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 3y = 0$ in series near the ordinary a) 5 point x = 0. Using change of scale property, evaluate $L{3\cos 6t - 5\sin 6t}$ and hence b) show that $L\{e^{-2t}(3\cos 6t - 5\sin 6t)\} = \frac{3(s-8)}{s^2 + 4s + 40}$ 5 Laplace transform, y'' + 2y' + 2y = tthat given Solve using c) 5 y(0) = y'(0) = 1. Obtain series solution of $\frac{d^2y}{dx^2} + y = 0$ near the ordinary point x = 0. 5 a) $F(s) = \frac{1}{(s^2 + a^2)(s^2 + b^2)} (a \neq b), \text{ then find } f(t),$ where If b) 5 $f(t) = L^{-1} \{ F(s) \}.$

MTMA(HN)-08(A)

c)

9.

10.

Find the solution of the initial value problem $(D^2 - D - 2)y = 20\sin 2t$, given that y = -1, Dy = 2 at t = 0, where $D \equiv \frac{d}{dt}$. 5

Group - C

(Tensor Calculus)

Answer any one question from the following. $1 \times 10 = 10$

If f is an invariant, determine whether $\frac{\partial^2 f}{\partial r^p \partial r^q}$ is a tensor. 3 a)

- If $A_{ij}^k B_k^{jl} = 0$ for every B_k^{jl} , prove that A_{ij}^k vanishes identically. 4 b)
- Show that in an n-dimensional space a covariant skew-symmetric tensor c) of second order has at most $\frac{1}{2}n(n-1)$ different arithmetic components. 3 Show that in a Riemannian space V_n of dimension n with metric tensor

$$g_{ij}, \left\{ \begin{array}{c} i\\ ij \end{array} \right\} = rac{\partial}{\partial x^j} \left(\log \sqrt{g} \right).$$

a)

If A_{ij} is a symmetric tensor then show that $A_{ij,k}$ is symmetric in *i* and *j*.

4

2

4

c)

Line element of two neighbouring points $P(x^i)$ and $Q(x^i + dx^i)$ in a 3-dimensional space is given by $ds^{2} = (dx^{1})^{2} + 2(dx^{2})^{2} + 3(dx^{3})^{2} - 2dx^{1}dx^{2} + 4dx^{2}dx^{3}$. By this line element, does the above space form a Riemannian space ? Justify it.