West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2014

PART - III

MATHEMATICS - Honours PAPER -V

Duration : 4 Hours

Candidates are required to give their answers in their own words as far as practicable.
The figures in the margin indicate full marks.

GROUP - A

(Marks: 70)
Answer question No. 1 and any five from the rest.

1. Answer any five of the following :
a) Prove or disprove :The range of any convergent sequence in \mathbb{R} is a compact set.
b) Prove that the function $f:[-1,1] \rightarrow \mathbb{R}$ defined by $f(x)=x^{4}+x^{3}$ is of bounded variation over $[-1,1]$.
c) If e is defined by $\int_{1}^{e} \frac{\mathrm{~d} t}{t}=1$, prove that $2<e<3$.
d) Test the convergence of $\int_{1}^{\infty} \frac{\cos a x-\cos b x}{x} \mathrm{~d} x ; a, b \in \mathbb{R}-\{0\}$.

Check whether true or false : There exists no power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with radius of convergence 1 which is not convergent at both $x= \pm 1$.
Let $x:|0,1| \rightarrow \mathbb{R}$ and $y:|0,1| \rightarrow \mathbb{R}$ be defined by $x(t)=\frac{1}{3^{n}}, \frac{1}{3^{n+1}}<t<\frac{1}{3^{n}} ; n=0,1,2, \ldots$.

$$
=0, t=0
$$

and $y(t)=t^{3} \sin \frac{1}{t^{2}}, t \neq 0$

$$
=0 . t=0
$$

Prove that the curve $\gamma=(x, y)$ is rectifiable.
Determine the perimeter of the cardioid $r=a(1+\cos \theta), a>0$.
Evaluate $\iint \sqrt{4 a^{2}-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y$ taken over the upper half of the circle $x^{2}+y^{2}-2 a x=0$.
Prove or disprove : The trigonometric series $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ represents a Fourier series.
Prove that a compact subset of \mathbb{R} is closed and bounded in \mathbb{R}.
Discuss whether the set $\left\{1+\frac{(-1)^{n}}{n}\right\}$ is compact or not.
Every point of a compact set S in \mathbb{R} is an isolated point of S. Prove that S is finite.
State and prove Taylor's theorem for a real-valued function of two independent variables.
If $f(x, y)=\sin \pi x+\cos \pi y$, use Mean value theorem to express $f\left(\frac{1}{2}, 0\right)-f\left(0,-\frac{1}{2}\right)$ in terms of the first order partial derivatives of f and deduce that there exists θ in (0,1) such that

$$
\frac{4}{\pi}=\cos \frac{\pi}{2} \theta+\sin \frac{\pi}{2}(1-\theta)
$$

c) Prove that the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $\frac{8 a b c}{3 \sqrt{3}}$.
4. a) Let $f:|a, b| \rightarrow \mathbb{R}$ be a bounded function on $|a, b|$. Prove that to each positive ε there corresponds a positive δ such that $\int_{-}^{b} f-\varepsilon<L(P, f)$ for all partitions P of $[a, b]$ satisfying $\|P\| \leq \delta$.
Further if $\left\{P_{n}\right\}$ be a sequence of partitions of $[a, b]$ such that $\left\|P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ then prove that
$\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\int_{\underline{a}}^{b} f$
b) Prove that $f: \mid 0,1] \rightarrow \mathbb{R}$ defined by $f(0)=0$ and $f(x)=\left[x^{-1}\right]^{-1}$, for $0<x \leq 1$ is integrable, where $\lfloor y \mid$ denotes the integral part of y.
c) A function $f:[0,1] \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
f(x) & =x+x^{3}, \text { if } x \text { is rational } \\
& =x^{2}+x^{3}, \text { if } x \text { is irrational. }
\end{aligned}
$$

Evaluating $\int_{\underline{0}}^{1} f$ and $\int_{0}^{1} f$, examine the integrability of f in $[0,1\}$
5. a) If $f:|a, b| \rightarrow \mathbb{R}$ be integrable on $|a, b|$ then prove that the function $F:[a, b] \rightarrow \mathbb{R}$ defined by $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ is continuous on $[a, b]$.

Give an example to show that continuity of f is not needed for the continuity of F.
b) Prove that for $0<c<1.2 \int_{0}^{1} \sqrt{1-c^{2} \sin ^{2} x} \mathrm{~d} x>\sqrt{1-c^{2}}+1$.
c) Let $f(x)=x[x \mid, x \in\{0,3]$. Show that f is integrable on $[0,3]$. Further show that evaluation of $\int_{0}^{3} f$, cannot be done by the fundamental theorem of Integral calculus.

3
a) Show that the integral $\int_{0}^{1} x^{p-1} \log x d x$ is convergent if and only if $p>0$.
b) Test the convergence of the integral $\int_{0}^{1} \sin x^{1 / 3} \frac{\cos \sqrt{x}}{\sqrt{x}} \mathrm{~d} x$. 3
c) If f is continuous on $[0,1]$, show that $\int_{0}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} \mathrm{~d} x$ is convergent.
a) Define uniform convergence of a sequence of functions $\left\{f_{n}\right\}_{n}$ on $S(\subset \mathbb{R})$.
A sequence of functions $\left\{f_{n}\right\}$ is uniformly convergent on $S(\subset \mathbb{R})$ to a function f and $x \rightarrow x_{0} f_{n}(x)=a_{n}$, where $x_{0} \in S^{\prime}$. Prove that the sequence $\left\{a_{n}\right\}$ is convergent and $\lim _{x \rightarrow x_{0}} f(x)$ exists and is equal to $\lim _{n \rightarrow \infty} a_{n}$.
$1+4$
b) For a sequence of functions $\left\{f_{n}\right\}$, where each f_{n} is differentiable on $[a, b]$, does uniform convergence of $\left\{f_{n}\right\}$ implies uniform convergence of $\left\{f_{n}^{\prime}\right\}$? Justify your answer.
c) Examine uniform convergence of $\left\{f_{n}\right\}$ on $[0,1$], where $f_{n}(x)=\frac{n^{2} x}{1+n^{4} x^{2}}, x \in[0,1]$, for each $n \in \mathbb{N}$.
8. a) Prove that the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{\cos n x}{p^{2}-n^{2}}$ is uniformly convergent on any closed and bounded interval $\{a, b \mid$, where $p \neq 0, \pm 1, \pm 2, \ldots \ldots$.
b) Let $\sum_{1}^{\infty} f_{n}(x)$ be uniformly convergent to $f(x)$ on $\{a, b$], where each f_{n} is continuous on $\{a, b \mid$ and let $g:|a, b| \rightarrow \mathbb{R}$ be integrable on $|a, b|$; prove that $\int_{a}^{b} f(x) g(x) \mathrm{d} x=\sum_{1}^{\infty} \int_{a}^{b} f_{n}(x) g(x) \mathrm{d} x$.
c) A series $\sum_{n=1}^{\infty} f_{n}(x)$ of differentiable functions f_{n} on $[0,1 \mid$ is such that $S_{n}(x)=\sum_{i=1}^{n} f_{i}(x)=\frac{\log \left(1+n^{4} x^{2}\right)}{2 n^{2}}, x \in[0,1]$ and $n \in N$. Show that $\frac{\mathrm{d}}{\mathrm{d} x} \sum_{n=1}^{\infty} f_{n}(x)=\sum_{n=1}^{\infty} f_{n}^{\prime}(x), x \in[0,1]$.
What can be said about uniform convergence of $\sum_{1}^{\infty} f_{n}^{\prime}(x), x \in[0,1]$?
9. a) If $\sum_{0}^{\infty} a_{n} x^{n}$ be a power series with radius of convergence $R(>0)$ and $\sum_{0}^{\infty} a_{n} R^{n}$ is convergent then prove that $\sum_{0}^{n} a_{n} x^{n}$ is uniformly convergent on $[0, R]$.
Further if the sum of $\sum_{0}^{\infty} a_{n} x^{n}$ be $f(x)$ on $(-R, R)$, prove that $\sum_{n=0}^{\infty} a_{n} R^{n}=\lim _{x \rightarrow R_{-}} f(x)$.
b) From the relation $\sin ^{-1} x=\int_{0}^{x} \frac{d x}{\sqrt{1-x^{2}}},|x|<1$; show that $\sin ^{-1} x=x+\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^{5}}{5}+\ldots .,|x| \leq 1$. Hence deduce that $\frac{\pi}{2}=1+\frac{1}{2} \cdot \frac{1}{3}+\frac{1.3}{2.4} \cdot \frac{1}{5}+\ldots \ldots$.

$$
4+1
$$

10. a) Obtain the Fourier series of the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ defined as

$$
\begin{aligned}
f(x) & =\cos x, 0 \leq x \leq \pi \\
& =-\cos x,-\pi \leq x<0
\end{aligned}
$$

Hence find the sum of the series $\frac{2}{1.3}-\frac{6}{5.7}+\frac{10}{9.11}-\ldots .$.
b) Show that $\int_{0}^{\pi / 2} \log \left(\frac{a+b \sin \theta}{a-b \sin \theta}\right) \cdot \frac{1}{\sin \theta} d \theta=\pi \sin ^{-1} \frac{b}{a} ; a>b \geq 0$. 4
c) Show that $\iint_{E} y^{2} \sqrt{a^{2}-x^{2}} \mathrm{~d} x \mathrm{~d} y=\frac{32}{45} a^{5}$, where $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq a^{2}\right\}$. 3

GROUP - B
(Marks : 15)
Answer any one of the following.
11. a) Let $C[0,1]$ denotes the set of all real valued continuous functions on [0,1]. For $x, y \in[0,1]$, let $\mathrm{d}(x, y)=\int_{0}^{1}|x(t)-y(t)| \mathrm{d} t$. Show that d is a metric on $C\{0,1]$.
b) A subset of a metric space (X, d) is said to be closed if $X-A$ is an open set. Show that an arbitrary union of open sets is an open set and an arbitrary intersection of closed sets is a closed set.
c) If $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are convergent sequences in a metric space (x, d), show that. $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)$ exists.

Hence correct or justify : $d(x, y)$ is a continuous function.
12. a) Let X denotes the set of all real valued sequences, and let $d: X \times X \rightarrow \mathbb{R}$ be defined by $d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}-y_{n}\right|}$, where $x=\left\{x_{n}\right\}$ and $y=\left\{y_{n}\right\}$. Show that d is a metric.
b) Define Cauchy sequence in a metric space (X, d). Prove that a Cauchy sequence in a metric space is convergent iff it has a convergent subsequence. Define the term 'complete metric space'. $1+4+1$
c) Let $C[a, b \mid$ denotes the metric space of all continuous functions defined on closed bounded interval | a, b) with the usual metric $d(x, y)=\sup _{a \leq t \leq b}|x(t)-y(t)|$.

Show that in this metric space a sequence $\left\{x_{n}\right\}$ converges to x iff $\left\{x_{n}(t)\right\}$ converges uniformly to $x(t)$ on $[a, b]$.

GROUP - C

(Marks: 15)
Answer any one of the following.
13. a) If Z is a point on the complex plane and (α, β, γ) is the stereographic projection on the Riemann sphere $x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4}$ then prove that $Z=\frac{\alpha+i \beta}{1-\gamma}(i=\sqrt{-1})$.
b) Let u, v be real-valued functions such that $f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $Z_{0}=x_{0}+i y_{0}$. Then prove that the function u and v are differentiable at the point $\left(x_{0}, y_{0}\right)$ and satisfy the Cauchy-Riemann equation.
c) Prove that $u(x, y)=x^{3}-3 x y^{2}[x, y \in R]$ is a harmonic function on \mathbb{R}^{2}. Find the harmonic conjugate of u.
a) Prove that the function

$$
f(x+i y)= \begin{cases}\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2} \neq 0 \\ 0 & , \text { if } x^{2}+y^{2}=0\end{cases}
$$

Satisfies Cauchy-Riemann equations at the origin but $f^{\prime}(0)$ does not exist. 5
b) Find the points where the following function f is differentiable and hence, deduce that it is nowhere analytic : $f=u+i v$, where $u(x, y)=x^{2} y^{2}, v(x, y)=2 x^{2} y^{2}$. 5
c) Prove that a function $f: D \rightarrow \phi, D \subset \phi$ is continuous at $Z_{0} \in D$ if and only if $f\left(Z_{0}\right)=\lim _{n \rightarrow \infty} f\left(Z_{n}\right)$ whenever $Z_{n} \rightarrow Z_{0}$ as $x \rightarrow \infty, Z_{n} \in D$, for $n \in \mathbb{N}$.

