West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2014

PART-II

MATHEMATICS-Honours

Paper- IV

Duration : 4 Hours

Full Marks: 100

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Group-A

Answer any two questions.

 $2 \times 10 = 20$ 2 2

a)	Prove that the locus of the pole with respect t	o the ellipse $\frac{x^-}{a^2} + \frac{y^-}{b^2} = 1$	of
	any tangent to the auxiliary circle is the curve	$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2}.$	5

b)

1.

2.

From points on the circle $x^2 + y^2 = a^2$ tangents are drawn to the hyperbola $x^2 - y^2 = a^2$. Prove that the locus of the middle points of the

chords of contact is the curve $\left(x^2 - y^2\right)^2 = a^2 \left(x^2 + y^2\right)$. 5

Show that the condition that the plane ax+by+cz=0 may cut the cone a) yz + zx + xy = 0 in the perpendicular lines is $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$. 5

- Find the locus of the point of intersection of the perpendicular b) generators of the hyperbolic paraboloid $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$. 5
- 3.

a)

b)

Reduce the equation $x^2 + y^2 + z^2 - 2xy - 2yz + 2zx + x - 4y + z + 1 = 0$ to its canonical form and determine the type of the quadric that it represents. 5 Prove that the enveloping cylinder of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ whose generators are parallel to the straight line $\frac{x}{0} = \frac{y}{\pm \sqrt{a^2 - b^2}} = \frac{z}{c}$ 5

meets the plane z = 0 in circles.

7

183

Group - B

Answer any one question.
$$1 \times 10 = 10$$

a) Find the eigenvalues and eigenfunctions of the differential equation
 $\frac{d}{dx} \left(x \frac{dy}{dx}\right) + \frac{\lambda}{x} y = 0$ ($\lambda > 0$) satisfying the boundary conditions
 $y(1) = 0$ and $y'(e) = 0$. 5
b) Solve :
 $\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2+y^2}$. 5
a) Solve by Lagrange's method :
 $x^2(y-z)p+y^2(z-x)q = z^2(x-y)$. $\left[p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}\right]$. 5
b) Solve by Charpit's method :
 $2x \left(q^2z^2+1\right) = pz$. 5
Group - C
Answer either Q. No.6 or Q.No. 7 and either Q.No. 8 or Q. No. 9.
 $13 + 12 = 25$
a) Prove that the set of all feasible solutions of an L.P.P. is a convex set. 6
b) Solve the L.P.P.
Maximize $Z = 2x_1 + 3x_2 + x_3$
subject to $-3x_1 + 2x_2 + 3x_3 = 8$
 $-3x_1 + 4x_2 + 2x_3 = 7$
 $x_1, x_2, x_3 = 0$. 7
a) Use duality to solve the following L.P.P.
Minimize $Z = x_1 - x_2$
subject to $2x_1 + x_2 = 2$
 $-x_1 - x_2 \ge 1$.
 $x_1, x_2 \ge 0$ 7

b)

Prove that if either the primal or the dual problem has a finite optimal solution, then the other problem will also have a finite optimal solution and the optimal values of the objective functions in both the problems will be same. . 6

5.

6.

7.

4.

a)

8.

Obtain an optimal basic feasible solution to the following transportation 6 problem :

	w ₁	w_2	w ₃	w ₄	ai
F_1	19	30	50	10	7
F_{2}	70	30	40	60	. 9
F3	40	8	70	20	18
bj	5	8	7	14	

b)

a)

b)

Solve the following travelling Salesman problem :

	A .	В	C	D
A [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	10	15
3	16	00	11	13
	17	18	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20
	13	11	18	00

9.

10.

In a rectangular game, the pay-off matrix A is given by

1	3	2	-1	
A =	4	0	5	
6.3	-1	3	-2	

State, with justifications, whether the players will use pure or mixed 6 strategies. What is the value of the game ? 6

Solve the following game graphically or otherwise : B

	4
2	7
3	5
11	2
	2 3 11

Group-D

 $3 \times 15 = 45$

6

Answer any three questions. A particle is projected vertically upwards with a velocity u in a medium whose resistance varies as the square of the velocity. Investigate the motion.

b)

a)

One end of an elastic string whose modulus of elasticity is $\boldsymbol{\lambda}$ and whose unstretched length a is fixed to a point on a smooth horizontal table and the other end is tied to a particle of mass m which is lying on the table. The particle is pulled to a distance where the extension of the string is b and then let go. Show that the time of small oscillation is

$$2\left(\pi+\frac{2a}{b}\right)\sqrt{\frac{am}{\lambda}}.$$

A

8

7

11. a)

12.

13.

b)

a)

Find the tangential and normal components of velocities and accelerations of a particle which describes a plane curve. 7

One end of an elastic string of unstretched length a is tied to a point on the top of a smooth table and a particle attached to the other end can move freely on the table. If the path be nearly circular of radius b, show that its apsidal angle is approximately

$$\pi\sqrt{\left(\frac{b-a}{4b-3a}\right)}.$$

8

Two smooth spheres of masses m_1 and m_2 moving with respective velocities u_1 and u_2 in the same direction impinge directly. If e be the co-efficient of restitution between them, find their velocities after impact, loss of kinetic energy and impulsive action. 7

b)

a)

b)

a)

b)

A body describing an ellipse of eccentricity *e* under the action of a force tending to a focus, and when at the nearer apse, the centre of force is transferred to the other focus. Prove that the eccentricity of the new orbit 8

is $\frac{e(3+e)}{1-e}$

A particle is projected vertically upwards from the earth's surface with a velocity just sufficient to carry it to infinity. Prove that the time it takes in reaching a height h is

$$\frac{1}{3}\sqrt{\frac{2R}{g}} \left(1+\frac{h}{R}\right)^{3/2} -1$$

where R is the radius of the earth.

Deduce the differential equation of a central orbit in two-dimensional polar coordinates (r, θ). 8

A small meteor of mass m, falls into the sun when the earth is at the end of minor axis of its orbit. If M be the mass of the sun, show that the major axis of the earth's orbit is lessened by $2a\frac{m}{M}$, that the periodic time is lessened by $\frac{2m}{M}$ of a year, and that the major axis of its orbit is

turned through an angle $\frac{b}{ae} \frac{m}{M}$.

A gun of mass M fires a shell of mass m horizontally and the energy of explosion is such as would be sufficient to project the shell vertically to a height h. Show that the velocity of recoil of the gun is

1/2 2mE M(m+M)

7

8

14.

West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2014 PART – III

MATHEMATICS – Honours PAPER –V

Duration : 4 Hours

c)

Maximum Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A

(Marks: 70)

Answer question No. 1 and any five from the rest.

1. Answer any *five* of the following :

 $5 \times 3 = 15$

a) Prove or disprove :The range of any convergent sequence in IR is a compact set.

b) Prove that the function $f: [-1, 1] \rightarrow \mathbb{R}$ defined by $f(x) = x^4 + x^3$ is of bounded variation over [-1, 1].

If *e* is defined by
$$\int_{1}^{e} \frac{dt}{t} = 1$$
, prove that $2 < e < 3$.

d) Test the convergence of
$$\int_{1}^{\infty} \frac{\cos ax - \cos bx}{x} \, dx; \, a, \, b \in \mathbb{R} - \{0\}.$$

Check whether true or false : There exists no power series $\sum a_n x^n$ e) with radius of convergence 1 which is not convergent at both $x = \pm 1$. Let $x : [0, 1] \to IR$ and $y : [0, 1] \to IR$ be defined by $x(t) = \frac{1}{3^n}, \frac{1}{3^{n+1}} < t < \frac{1}{3^n}; n = 0, 1, 2, \dots$ 1) = 0, t = 0and $y(t) = t^{3} \sin \frac{1}{t^{2}}, t \neq 0$ = 0, t = 0Prove that the curve $\gamma = (x, y)$ is rectifiable. Determine the perimeter of the cardioid $r = a (1 + \cos \theta), a > 0$. g) Evaluate $\iint \sqrt{4a^2 - x^2 - y^2} dx dy$ taken over the upper half of the h). circle $x^2 + y^2 - 2ax = 0$. Prove or disprove : The trigonometric series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ represents a i) Fourier series. Prove that a compact subset of IR is closed and bounded in IR. 5 a) Discuss whether the set $\left\{1 + \frac{(-1)^n}{n}\right\}$ is compact or not. 3 b) Every point of a compact set S in \mathbb{R} is an isolated point of S. Prove that Sc) is finite. 3 State and prove Taylor's theorem for a real-valued function of two a) independent variables. 1 + 3If $f(x, y) = \sin \pi x + \cos \pi y$, use Mean value theorem to express b) $f\left(\frac{1}{2},0\right) - f\left(0,-\frac{1}{2}\right)$ in terms of the first order partial derivatives of f and deduce that there exists θ in (0, 1) such that $\frac{4}{\pi} = \cos \frac{\pi}{2} \theta + \sin \frac{\pi}{2} (1 - \theta).$ 3

2.

3.

c)

a)

Prove that the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\frac{8 abc}{3\sqrt{3}}$.

4.

Let $f : [a, b] \to I\!R$ be a bounded function on [a, b]. Prove that to each positive ε there corresponds a positive δ such that $\int_{a}^{b} f - \varepsilon < L(P, f)$ for

all partitions P of [a, b] satisfying $||P|| \le \delta$.

Further if $\{P_n\}$ be a sequence of partitions of [a, b] such that $||P_n|| \to 0$ as $n \to \infty$ then prove that

$$\lim_{n \to \infty} L(P_n, f) = \int_{a}^{b} f.$$
 3+2

b)

Prove that $f : [0, 1] \rightarrow IR$ defined by f(0) = 0 and $f(x) = \begin{bmatrix} x^{-1} \end{bmatrix}^{-1}$, for $0 < x \le 1$ is integrable, where [y] denotes the integral part of y. 2

- c)
- A function $f : [0, 1] \rightarrow IR$ is defined by
- $f(x) = x + x^3$, if x is rational = $x^2 + x^3$, if x is irrational.

Evaluating $\int_{0}^{1} f$ and $\int_{0}^{1} f$, examine the integrability of f in [0, 1]. 4

5. a)

If $f : [a, b] \to \mathbb{R}$ be integrable on [a, b] then prove that the function $F : [a, b] \to \mathbb{R}$ defined by $F(x) = \int_{-\infty}^{x} f(t) dt$ is continuous on [a, b].

Give an example to show that continuity of f is not needed for the continuity of F. 3 + 2

189 Prove that for 0 < c < 1, $2 \int \sqrt{1 - c^2 \sin^2 x} \, dx > \sqrt{1 - c^2} + 1$. b) 3 Let $f(x) = x[x], x \in [0, 3]$. Show that f is integrable on [0, 3]. c) Further show that evaluation of $\int f$, cannot be done by the fundamental theorem of Integral calculus. 3 Show that the integral $\int_{0}^{1} x^{p-1} \log x \, dx$ is convergent if and only if a) p > 0.4 Test the convergence of the integral $\int_{0}^{1} \sin x^{1/3} \frac{\cos \sqrt{x}}{\sqrt{x}} dx$. b) 3 If f is continuous on [0, 1], show that $\int_{0}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx$ is convergent. 4 c) Define uniform convergence of a sequence of functions $\{f_n\}_n$ on a) $S(\subset \mathbb{R}).$ A sequence of functions $\{f_n\}$ is uniformly convergent on $S (\subset \mathbb{R})$ to a function f and $\lim_{x \to x_0} f_n(x) = a_n$, where $x_0 \in S'$. Prove that the sequence $\{a_n\}$ is convergent and $\lim_{x \to x_0} f(x)$ exists and is equal to $n \rightarrow \infty a_n$. 1 + 4For a sequence of functions $\{f_n\}$, where each f_n is differentiable on b) [a, b], does uniform convergence of $\left\{f_n\right\}$ implies uniform convergence

of $\left\{ f_n^l \right\}$? Justify your answer. 3 Examine uniform convergence of $\{f_n\}$ on [0, 1], where $f_n(x) = \frac{n^2 x}{1 + n^4 x^2}, x \in [0, 1], \text{ for each } n \in \mathbb{N}.$ 3

c)

C

8.

Prove that the series $\sum_{n=0}^{\infty} (-1)^n \frac{\cos nx}{p^2 - n^2}$ is uniformly convergent on any closed and bounded interval [a, b], where $p \neq 0, \pm 1, \pm 2, \dots, 4$

b) Let
$$\sum_{1}^{\infty} f_n(x)$$
 be uniformly convergent to $f(x)$ on $[a, b]$, where each f_n is continuous on $[a, b]$ and let $g: [a, b] \to \mathbb{R}$ be integrable on $[a, b]$; prove that $\int_{1}^{b} f(x) g(x) dx = \sum_{n=1}^{\infty} \int_{1}^{b} f_n(x) g(x) dx$.

a, b]; prove that
$$\int_{a}^{b} f(x) g(x) dx = \sum_{n=1}^{b} \int_{a}^{b} f_{n}(x) g(x) dx.$$
 3

A series
$$\sum_{n=1}^{\infty} f_n(x)$$
 of differentiable functions f_n on [0, 1] is such that

$$S_{n}(x) = \sum_{i=1}^{n} f_{i}(x) = \frac{\log(1 + n^{4}x^{2})}{2n^{2}}, x \in [0, 1] \text{ and } n \in \mathbb{N}. \text{ Show that}$$
$$\frac{d}{dx} \sum_{n=1}^{\infty} f_{n}(x) = \sum_{n=1}^{\infty} f_{n}^{1}(x), x \in [0, 1].$$

What can be said about uniform convergence of $\sum_{i=1}^{\infty} f_n^{(i)}(x), x \in [0, 1]?$

If $\sum_{0}^{\infty} a_n x^n$ be a power series with radius of convergence R (> 0) and

 $\sum_{0}^{\infty} a_n R^n$ is convergent then prove that $\sum_{0}^{n} a_n x^n$ is uniformly convergent on [0, R].

Further if the sum of $\sum_{n=0}^{\infty} a_n x^n$ be f(x) on (-R, R), prove that

$$\sum_{n=0}^{\infty} a_n R^n = \lim_{x \to R-} f(x).$$

$$4+2$$

b) From the relation
$$\sin^{-1} x = \int_{0}^{\infty} \frac{dx}{\sqrt{1-x^2}}, |x| < 1;$$
 show that
 $\sin^{-1} x = x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \dots, |x| \le 1.$ Hence deduce that
 $\frac{\pi}{2} = 1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \dots$ $4 + 1$
a) Obtain the Fourier series of the function $f : [-\pi, \pi] \to I\!R$ defined as
 $f(x) = \cos x, 0 \le x \le \pi$
 $= -\cos x, -\pi \le x < 0.$

Hence find the sum of the series $\frac{2}{1.3} - \frac{6}{5.7} + \frac{10}{9.11} - \dots$ 3 + 1

Show that
$$\int_{0}^{\pi/2} \log\left(\frac{a+b\sin\theta}{a-b\sin\theta}\right) \cdot \frac{1}{\sin\theta} d\theta = \pi \sin^{-1} \frac{b}{a}; a > b \ge 0.$$

that $\iint_{E} y^2 \sqrt{a^2 - x^2} \, dx \, dy = \frac{32}{45} a^5$, where $E = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le a^2 \}.$

3

GROUP - B

(Marks: 15)

Answer any one of the following.

Let C [0, 1] denotes the set of all real valued continuous functions on 11. a) [0, 1]. For $x, y \in [0, 1]$, let $d(x, y) = \int_{0}^{1} |x(t) - y(t)| dt$. Show that d 4

is a metric on C [0, 1].

b)

10.

a)

b)

c)

A subset of a metric space (X, d) is said to be closed if X - A is an open set. Show that an arbitrary union of open sets is an open set and an arbitrary intersection of closed sets is a closed set. 3 + 3

c)

192

If $\{x_n\}, \{y_n\}$ are convergent sequences in a metric space (X, d), show that $\lim_{n \to \infty} d(x_n, y_n)$ exists.

Hence correct or justify : d(x, y) is a continuous function. 3+2

12. a)

Let X denotes the set of all real valued sequences, and let $d : X \times X \to \mathbb{R}$ be defined by

$$d(x, y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}, \text{ where } x = \{x_n\} \text{ and } y = \{y_n\}.$$

4

Show that *d* is a metric.

- b) Define Cauchy sequence in a metric space (X, d). Prove that a Cauchy sequence in a metric space is convergent *iff* it has a convergent subsequence. Define the term 'complete metric space'. 1 + 4 + 1
- c)
- Let C [a, b] denotes the metric space of all continuous functions defined on closed bounded interval [a, b] with the usual metric $d(x, y) = \sup_{a \le t \le b} |x(t) - y(t)|.$

Show that in this metric space a sequence $\{x_n\}$ converges to x iff $\{x_n(t)\}$ converges uniformly to x(t) on [a, b]. 5

GROUP - C

(Marks: 15)

Answer any one of the following.

13.

a)

that $Z = \frac{\alpha + i\beta}{1 - \gamma} (i = \sqrt{-1}).$

Let u, v be real-valued functions such that f(x + iy) = u(x, y) + iv(x, y) is differentiable at $Z_0 = x_0 + iy_0$. Then prove that the function u and v are differentiable at the point (x_0, y_0) and satisfy the Cauchy-Riemann equation. 5

c)

a)

b)

c)

b)

Prove that $u(x, y) = x^3 - 3xy^2 [x, y \in R]$ is a harmonic function on \mathbb{R}^2 . Find the harmonic conjugate of u.

Prove that the function

$$f(x+iy) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, & \text{if } x^2 + y^2 \neq 0\\ 0, & \text{if } x^2 + y^2 = 0 \end{cases}$$

Satisfies Cauchy-Riemann equations at the origin but f'(0) does not exist. 5

Find the points where the following function f is differentiable and hence, deduce that it is nowhere analytic : f = u + iv, where $u(x, y) = x^2 y^2$, $v(x, y) = 2x^2 y^2$.

Prove that a function $f: D \to \mathcal{C}$, $D \subset \mathcal{C}$ is continuous at $Z_0 \in D$ if and only if $f(Z_0) = \lim_{n \to \infty} f(Z_n)$ whenever $Z_n \to Z_0$ as $x \to \infty$, $Z_n \in D$, for $n \in \mathbb{N}$.