West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2014
 PART - II
 MATHEMATICS - (Honours)
 PAPER - III

Duration : 4 Hours
Maximum Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A
Answer any three questions.

1. Reduce the reciprocal equation $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$ to the standard form and solve it.
2. Solve $x^{3}+12 x-12=0$ by Cardan's method.
3. Solve $2 x^{4}+6 x^{3}-3 x^{2}+2=0$ by Ferrari's method.
4. If α is an imaginary root of $x^{7}-1=0$, find the equation whose roots are $\alpha+\alpha^{6}, \alpha^{2}+\alpha^{5}$ and $\alpha^{3}+\alpha^{4}$.
5. Let a, b, c, d be four positive real numbers such that $a+b+c+d=p$ and $a b c d=q$, where p and q are constants. Find the least and greatest values of $(p-a)(p-b)(p-c)(p-d)$.
6. a) Let x and y be positive numbers such that $12 x^{3} y^{4}=1$. Find the least value of $2 x+3 y$.
b) If a, b and c be positive real numbers such that $a+b+c=1$, then show that $\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2}+\left(c+\frac{1}{c}\right)^{2} \geq \frac{100}{3}$.

GROUP - B

Answer any one question.

$$
1 \times 10=10
$$

7. a) Prove that every proper subgroup of a group of order 6 is cyclic.
b) Let (G, o) be a group and H be a subgroup of G. For any $a, b \in G$, prove that $a H=b H$ if and only if $a^{-1} \circ b \in H$.
c) Express the permutation
$\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 9 & 7 & 5 & 4 & 3 & 6 & 1 & 8\end{array}\right)$ as a product of
transpositions and hence determine whether σ is an even permutation.

$$
2+1
$$

8. a) Show that a finite group of order n in cyclic if it contains an element of order n.
b) Let (G, o) be a finite group and H be a subgroup of G. Prove that order of H is a factor of the order of G.
c) Let S_{3} denotes the group of permutations of $\{1,2,3\}$. Show that S_{3} is not a commutative group. Give example of a cyclic subgroup of order 3 of S_{3}, say H and write all the cosets of H in S_{3}.

GROUP - C

Answer any two questions.

$$
2 \times 10=20
$$

9. a) Prove that the intersection of two subspaces of a vector space V over a field F is a subspace of V, but the union of two subspaces of V is not, in general, a subspace of V.
b) Let $\{\alpha, \beta, \gamma\}$ be a basis of a vector space V. Show that $\{\alpha+\beta, \beta+\gamma, \gamma+\alpha\}$ is also a basis of V.

2
c) Is $w=\{(x, 2 y, 3 z) \mid x, y, z \in \mathbb{R}\}$ a subspace of the vectorspace \mathbb{R}^{3} ? Justify your answer.
10. a) Find bases for the row space and column space of $\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 0 & -3\end{array}\right)$.
b) Find for what values of a and b, the following system of equations

$$
\begin{aligned}
x+4 y+2 z & =1 \\
2 x+7 y+5 z & =2 b \\
4 x+a y+10 z & =2 b+1
\end{aligned}
$$

has
i) no solution
ii) unique solution
iii) infinite number of solutions.
a) Use Cayley-Hamilton theorem to express A^{-1} as a polynomial in A and then compute A^{-1}, where $A=\left(\begin{array}{rrr}0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4\end{array}\right)$.
$2+3$
b) Diagonalize the symmetric matrix $A=\left(\begin{array}{rrr}6 & 4 & -2 \\ 4 & 12 & -4 \\ -2 & -4 & 13\end{array}\right)$.
a) Let $(V,\langle\rangle$,$) be a Euclidean space and let \|\|$ be the induced norm on V. Prove that for any two vectors α and β of V,

$$
3+2
$$

i) $\quad\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$
ii) $\quad\|\alpha+\beta\|^{2} \leq 2\|\alpha\|^{2}+2\|\beta\|^{2}$.
b) Apply Gram-Schmidt orthonormalization process to the set of vectors $\{(1,1,1),(2,-2,1),(3,1,2)\}$ to obtain an orthonormal basis of \mathbb{R}^{3} with the standard inner product.

GROUP - D

Answer any two questions.

$$
2 \times 10=20
$$

a) Let $\left\{x_{n}\right\}$ be a monotonic sequence of real numbers which has a convergent subsequence $\left\{x_{n_{k}}\right\}$ converging to l. Show that $\left\{x_{n}\right\}$ converges to l.
b) Find the upper and lower limits of the sequence $\left\{(-1)^{n}+\cos \frac{n \pi}{4}\right\}$. 4

Let $\left\{x_{n}\right\}$ be a sequence of real numbers such that
\lim
$\lim _{n \rightarrow \infty} x_{2 n}=x_{n \rightarrow \infty} x_{2 n+1}=l$. Show that $x_{n \rightarrow \infty}=l$. 2
14. a) Define an absolutely convergent series. Give an example to show that a convergent series of real numbers may not be absolutely convergent.
b) Use Abel's test to show that the following is a convergent series : $0-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{3}+\frac{2}{3^{2}}-\frac{1}{4}+\frac{3}{4^{2}}-\ldots$
c) Let $\left\{u_{n}\right\}$ be a monotone decreasing sequence of positive terms such that $\lim _{n \rightarrow \infty} u_{n}=0$. Show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{u_{1}+\ldots .+u_{n}}{n}$ converges.
d) Evaluate $\lim _{x \rightarrow \infty}\left(\frac{a x+1}{a x-1}\right)^{x}$ where $a>0$.
15. a) Let a monotone increasing function f be bounded above on the bounded open interval (a, b). Show that $\lim _{x \rightarrow b-} f(x)$ exists.
b) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function taking only rational values. Show that f is a constant function on $[0,1]$.
c) Let $f: I \rightarrow \mathbb{R}$ be a function defined on an interval I or \mathbb{R} for which there exists $M>0$ such that $|f(x)-f(y)| \leq M|x-y|$ for all $x, y \in \mathbb{R}$. Show that f is uniformly continuous on I. Use this fact to show that $f(x)=\sqrt{x}$ is uniformly continuous on $(1, \infty)$. $2+2$
d) Let $y=\frac{1}{\sqrt{1+2 x}}$. Prove that $(1+2 x) y_{n+1}+(2 n+1) y_{n}=0$.
16. a) Obtain McLaurin's infinite series expansion of $(1+x)^{n},|x|<1$, where $n \in \mathbb{R}-\mathbb{N}$.
b) Use Rolle's theorem to show that between any two distinct real roots of $e^{x} \cos x+1=0$, ther is at leat one real root of $e^{x} \sin x+1=0$.
c) Prove that $0<\frac{1}{x} \cdot \log \frac{e^{x}-1}{x}<1$.
d) Study the extreme points of $f(x)=x^{x}, x>0$.

GROUP - E

Answer any five questions.

$$
5 \times 5=25
$$

17. Let $f(x, y)=\left\{\begin{array}{cc}\frac{x^{4}+y^{4}}{x-y}, & x \neq y \\ 0, & x=y\end{array}\right.$

Show that f_{x} and f_{y} exist at $(0,0)$ but f is not continuous at $(0,0)$. State a set of sufficient conditions for the continuity of the function $f(x, y)$ at an interior point of its domain of definition. $1+1+1+2$
18. If $f(x, y)$ be a function of two variables x and y where $x=u^{2} v, y=v^{2} u$ then show that
$2 x^{2} \frac{\partial^{2} f}{\partial x^{2}}+2 y^{2} \frac{\partial^{2} f}{\partial y^{2}}+5 x y \frac{\partial^{2} f}{\partial x \partial y}=u v \frac{\partial^{2} f}{\partial u \partial v}-\frac{2}{3}\left(u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}\right)$.
19. If u, v are two polynomials in x, y and are homogeneous of degree n, prove that $u \mathrm{~d} v-v \mathrm{~d} u=\frac{1}{n} \frac{\partial(u, v)}{\partial(x, y)}(x \mathrm{~d} y-y \mathrm{~d} x)$.
20. Let (a, b) be an interior point of domain of a function f of two variables. If f_{x} and f_{y} be both differentiable at (a, b), prove that $f_{x y}(a, b)=f_{y x}(a, b)$.
21. If v is a function of two variables x and y and $x=r \cos \theta, y=r \sin \theta$, prove that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial v}{\partial r}$.
22. Prove that the following three functions u, v, w are functionally related and find the relation connecting them where,
$u=\frac{x}{y-z}, v=\frac{y}{z-x}, w=\frac{z}{x-y}$.
23. Show that the functions f defined by
$f(x, y)=\left\{\begin{array}{cc}\frac{x y^{2}}{x^{2}+y^{4}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
possesses first order partial derivatives at (0.0) yet it is not differentiable at (0,0).
24. If u, v, w are the roots of the equation $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$ in λ, prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=-\frac{2(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}$.
25. State the conditions under which $f(x, y)=0$ will determine y uniquely as a function of x near the point (a, b). Show that $y^{2}-y x^{2}-2 x^{5}=0$ determines y uniquely as a function of x near the point $(1,-1)$ and find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $(1,-1)$.

GROUP - F

Answer any two questions.
26. Find the area included between the curve $x^{2} y^{2}=a^{2}\left(y^{2}-x^{2}\right), a>0$ and its asymptotes.
27. Find the centre of gravity of the planar region bounded by the parabola $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}=1$ and the coordinate axes.
28. Find the volume of the solid bounded by the surface generated by revolving the cissoid $y^{2}=\frac{x^{3}}{2 a-x}, a>0$ about its asymptote.
29. Show that the moment of inertia of a thin circular ring of mass M whose outer and inner radii are a and b respectively about an axis through the centre perpendicular to the plane of the ring is $\frac{1}{2} M\left(a^{2}+b^{2}\right)$.

