West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013 PART - II
 MATHEMATICS - HONOURS Paper - III

Duration : 4 Hours]
[Full Marks : 100
The figures in the margin indicate full marks.

GROUP - A

Answer any three questions.

1. Solve the equation $x^{5}-6 x^{4}+7 x^{3}-7 x^{2}+6 x-1=0$.
2. Solve the equation $x^{3}-6 x-4=0$ by Cardan's method.
3. Solve $x^{4}-2 x^{3}-5 x^{2}+10 x-3=0$ by Ferrari's method.
4. If α is a special root of $x^{11}-1=0$, prove that $(\alpha+1)\left(\alpha^{2}+1\right) \ldots\left(\alpha^{10}+1\right)=1$.
5. a) Let a, b, c be three positive real numbers. Prove that unless $a=b=c$,

$$
\frac{2}{b+c}+\frac{2}{c+a}+\frac{2}{a+b}>\frac{9}{a+b+c}
$$

b) Let a, b, c be three positive real numbers such that $a b c=1$. Prove that $(1+a)(1+b)(1+c) \geq 8$.
6. a) If a and b be positive real numbers such that $a+b=1$, then show that $\left(a+\frac{1}{a}\right)^{2}+\left(b+\frac{1}{b}\right)^{2} \geq \frac{25}{2}$.
b) If x, y, z be three positive real numbers such that $x^{2}+y^{2}+z^{2}=27$, then show that $x^{3}+y^{3}+z^{3} \geq 81$.

GROUP - B

Answer any one question.
7. a) Prove that a cyclic group is always abelian. Is the converse true ? Justify your answer. Also give an example of an infinite cyclic group, mentioning all its generators.
b) Let H be a subgroup of G and $a, b \in G$. Show that either $a H \cap b H=0$ or $a H=b H$.
c) Let A_{3} denote the group of even permutations of $\{1,2,3\}$. What is the order of A_{3} ? Show that A_{3} is a cyclic group. Write all the generators of $A_{3}: \quad 1+1+$
8. a) Prove that any two left cosets of H in a group have the same cardinality.
b) Prove that a group of prime order has no non-trivial subgroup. 3
c) Let $\sigma=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3\end{array}\right)$ and $\tau=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$. Show that $(\sigma \tau)^{-1}=\tau^{-1} \sigma^{-1}$.

GROUP - C

$$
\text { Answer any two questions. } 2 \times 10=20
$$

9. a) Prove that every finite dimensional vector space has a basis. 5
b) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3}: x-4 y+3 z=0\right\}$. Show that W is a subspace of \mathbb{R}^{3}. Find a basis of W.
10. a) Find row rank and column rank of the matrix $\left(\begin{array}{llll}2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6\end{array}\right)$. Are they equal ? Justify.
b) Find for what values of a and b, the following system of equations has (i) no solution, (ii) unique solution, (iii) infinite number of solutions :

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y-z=b \\
& 5 x+7 y+a z=b^{2}
\end{aligned}
$$

11. a) Show that the eigenvalues of a real symmetric matrix are all real.
b) Diagonalize the symmetric matrix : $A=\left(\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right)$
12. a) State and prove Cauchy-Schwarz inequality in a Euclidean space.
b) Apply Gram-Schmidt orthonormalization process to the set of vectors $\{(1,-1,1),(2,0,1),(0,1,1)\}$ to obtain an orthonormal basis of \mathbb{R}^{3} with the standard inner product.

5

GROUP - D

Answer any two questions.

$$
2 \times 10=20
$$

13. a) Find all the cluster points of the sequence $\left\{a_{n}\right\}$ where $a_{n}=\left(1-\frac{1}{n^{2}}\right) \sin \frac{n \pi}{2}$. Hence find the upper limit and the lower limit of $\left\{a_{n}\right\}$.
b) For any bounded sequence $\left\{a_{n}\right\}$ of real numbers such that $\overline{\lim } a_{n}$ is finite, show that $\lim \left(-a_{n}\right)=-\varlimsup a_{n}$.
c) State and prove Bolzano-Weierstrass theorem.
14. a) Let $\left\{a_{n}\right\}$ be a monotone decreasing sequence of positive real numbers so th $\lim _{n \rightarrow \infty} a_{n}=0$. Then show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges.
b) Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{1^{2} \cdot 3^{2} \cdot 5^{2} \ldots(2 n-1)^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2} \ldots(2 n)^{2}} x^{n-1}, x>0$.
c) Let $f: I \rightarrow \mathbb{R}$ be a function continuous at $c \in I$, where I is an open interval $\mathbb{I R}^{\text {. Let }} f$ takes both positive and negative values in each neighbourhood of Show that $f(c)=0$.
15. a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then show that f is uniform continuous. Also show that the function $f(x)=\frac{1}{x}$ is not uniformly continuo on (0,1).
b) State Rolle's theorem. Let f be a continuous function on $[a, b]$, differentiable (a, b) such that $f(a)=f(b)=0$. Let k be a given real number. Use Roll theorem to show that there is a $c \in(a, b)$ such that $f^{\prime}(c)+k f(c)=0$.
c) If a_{n} is a positive monotonic decreasing function and if $\sum u_{n}$ is a converge series, prove that $\sum a_{n} u_{n}$ is also convergent.
16. a) Obtain Maclaurin's infinite series expansion of $\log (1+x)$ over t interval $(-1,1]$.
b) State Cauchy's Mean Value theorem. Deduce Lagrange's Mean Value theore from Cauchy's Mean Value theorem. Let f be a continuous function defined $[0,1]$ which is differentiable on $(0,1)$. Use Cauchy's Mean Value theorem show that $f(1)-f(0)=\frac{f^{\prime}(x)}{2 x}$ has at least one solution in $(0,1) . \quad 1+1$

2
c) Examine whether $f(x)=3+(x-3)^{3}$ has an extreme point at $x=3$.

GROUP - E

Answer any five questions.
17. Let $B=\left\{(a, 0) \in \mathbb{R}^{2}: a \in \mathbb{R}\right\}$. Show that B is a closed set but not an open set in \mathbb{R}^{2}.
18. Define $f(x, y)=\left\{\begin{array}{c}x \sin \frac{1}{y}+y \sin \frac{1}{x} ; x y \neq 0 \\ 0, \quad x y=0\end{array}\right.$

Show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists but the repeated limits do not exist.
19. Define $f(x, y)=\left\{\begin{array}{l}(a x+b y) \sin \frac{x}{y} ; y \neq 0 \\ 0,\end{array}\right.$. Is f continuous at $(0,0)$?
20. Prove that $f(x, y)=\sqrt{|x y|}$ possesses fist order partial derivatives at $(0,0)$ but is not differentiable at $(0,0)$
 Schwarz' theorem is not satisfied by f ?
22. Transform the equation $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=(y-x) z$ by introducing new independent variables $u=x^{2}+y^{2}, v=\frac{1}{x}-\frac{1}{y}$ and the new function $w=\log z-(x+y)$.
23. You are given a differentiable function $f(x, y)$. Prove that if the variables x and y are replaced by homogeneous linear functions $X=X(x, y), Y=Y(x, y)$ of x and y, then the obtained function $F(X, Y)$ is related with the given function as follows :

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=X \frac{\partial F}{\partial X}+Y \frac{\partial F}{\partial Y}
$$

24. Justify the existence and uniqueness of the implicit function $y=y(x)$ for the functional equation $y^{3} \cos x+y^{2} \sin ^{2} x=7$ near the point $\left(\frac{\pi}{3}, 2\right)$. Also find $\frac{d y}{d x}\left(\frac{\pi}{3}, 2\right)$.

$$
4+1
$$

25. Show that the functions $u=3 x+2 y-z, v=x-2 y+z$ and $w=x(x+2 y-z)$ are dependent and find the relation between them.

GROUP - \mathbf{F}

Answer any two questions. $2 \times 5=10$
26. Show that the area bounded by the semicubical parabola $y^{2}=a x^{3}$ and a double ordinate is $\frac{2}{5}$ of the area of the rectangle formed by this ordinate and the abscissa.
27. Find the coordinates of the centre of gravity of the first arc of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$.
28. If the loop of the curve $2 a y^{2}=x(x-a)^{2}$ revolves about the line $y=a$, then using Pappus theorem, find the volume of the solid generated.
29. Show that the moment of inertia of a truncated cone about its axis is $\frac{3 M\left(a^{5}-b^{5}\right)}{10\left(a^{3}-b^{3}\right)}$ where a and b are the radii of the two ends and M is the mass of the truncated cone.

