MTMA(HN)-03

West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013 PART – II

MATHEMATICS — HONOURS Paper – III

Duration : 4 Hours

6.

7.

[Full Marks: 100

 $3 \times 5 = 15$

The figures in the margin indicate full marks.

GROUP - A

Answer any three questions.

1. Solve the equation $x^5 - 6x^4 + 7x^3 - 7x^2 + 6x - 1 = 0$.

2. Solve the equation $x^3 - 6x - 4 = 0$ by Cardan's method.

3. Solve $x^4 - 2x^3 - 5x^2 + 10x - 3 = 0$ by Ferrari's method.

4. If α is a special root of $x^{11} - 1 = 0$, prove that $(\alpha + 1)(\alpha^2 + 1)...(\alpha^{10} + 1) = 1$.

5. a) Let a, b, c be three positive real numbers. Prove that unless a = b = c,

 $\frac{2}{b+c} + \frac{2}{c+a} + \frac{2}{a+b} > \frac{9}{a+b+c}.$

b) Let a, b, c be three positive real numbers such that abc = 1. Prove that $(1+a)(1+b)(1+c) \ge 8$.

a) If a and b be positive real numbers such that a + b = 1, then show that $\left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2 \ge \frac{25}{2}$.

b) If x, y, z be three positive real numbers such that $x^2 + y^2 + z^2 = 27$, then show that $x^3 + y^3 + z^3 \ge 81$.

GROUP - B

Answer any one question.

 $1 \times 10 = 10$

- a) Prove that a cyclic group is always abelian. Is the converse true ? Justify your answer. Also give an example of an infinite cyclic group, mentioning all its generators. 2 + 1 + 2
- b) Let H be a subgroup of G and $a, b \in G$. Show that either $aH \cap bH = \theta$ or aH = bH.
- c) Let A_3 denote the group of even permutations of { 1, 2, 3 }. What is the order of A_3 ? Show that A_3 is a cyclic group. Write all the generators of A_3 . 1 + 1 + 1

126

	127 MTMA(HN)-03
8. a)	Prove that any two left cosets of H in a group have the same cardinality. 4
b)	Prove that a group of prime order has no non-trivial subgroup, 3
c)	Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$. Show that $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$.
	GROUP - C
	Answer any two questions. $2 \times 10 = 20$
9. a)	Prove that every finite dimensional vector space has a basis. 5
b)	Let $W = \{(x, y, z) \in \mathbb{R}^3 : x - 4y + 3z = 0\}$. Show that W is a subspace of \mathbb{R}^3 . Find a basis of W. $2 + 3$
10. a)	Find row rank and column rank of the matrix $\begin{pmatrix} 2 & 1 & 4 & 3 \\ 3 & 2 & 6 & 9 \\ 1 & 1 & 2 & 6 \end{pmatrix}$. Are they equal ?
	Justify. 5
b)	Find for what values of a and b, the following system of equations has (i) no solution, (ii) unique solution, (iii) infinite number of solutions : 5
	x + y + z = 1
	x + 2y - z = b
	$5x + 7y + az = b^2$
11. a)	Show that the eigenvalues of a real symmetric matrix are all real. 5
b)	Diagonalize the symmetric matrix : $A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$ 5
	in
12. a)	State and prove Cauchy-Schwarz inequality in a Euclidean space. 2+3
b)	Apply Gram-Schmidt orthonormalization process to the set of vectors $\{(1,-1,1),(2,0,1),(0,1,1)\}$ to obtain an orthonormal basis of \mathbb{R}^3 with the standard inner product. 5
	GROUP - D
	Answer any two questions. $2 \times 10 = 20$
13. a)	Find all the cluster points of the sequence $\{a_n\}$ where $a_n = \left(1 - \frac{1}{n^2}\right) \sin \frac{n\pi}{2}$.
	Hence find the upper limit and the lower limit of $\{a_n\}$. 4
b)	For any bounded sequence $\{a_n\}$ of real numbers such that $\overline{\lim} a_n$ is finite,
	show that $\underline{lim}(-a_n) = -\overline{lim} a_n$.
-	State and more Dalance Weighting the second

4

c) State and prove Bolzano-Weierstrass theorem.

15

3 at 2 at

3

w 2

0

r s 2 r 2

r 1

MTMA(HN)-03

128

14. a) Let $\{a_n\}$ be a monotone decreasing sequence of positive real numbers so the

 $\lim_{n \to \infty} a_n = 0$. Then show that the series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.

- b) Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 3^2 \cdot 5^2 \dots (2n-1)^2}{2^2 \cdot 4^2 \cdot 6^2 \dots (2n)^2} x^{n-1}, x > 0.$
- c) Let f: I → IR be a function continuous at c ∈ I, where I is an open interval IR. Let f takes both positive and negative values in each neighbourhood of Show that f(c) = 0.
- 15. a) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then show that f is uniform continuous. Also show that the function $f(x) = \frac{1}{x}$ is not uniformly continuo on (0, 1).
 - b) State Rolle's theorem. Let f be a continuous function on [a, b], differentiable (a, b) such that f(a) = f(b) = 0. Let k be a given real number. Use Rolle theorem to show that there is a $c \in (a,b)$ such that f'(c) + kf(c) = 0.
 - c) If a_n is a positive monotonic decreasing function and if $\sum u_n$ is a converge series, prove that $\sum a_n u_n$ is also convergent.

16.

- a) Obtain Maclaurin's infinite series expansion of log(1+x) over t interval (-1, 1].
- b) State Cauchy's Mean Value theorem. Deduce Lagrange's Mean Value theorem from Cauchy's Mean Value theorem. Let f be a continuous function defined
 [0, 1] which is differentiable on (0, 1). Use Cauchy's Mean Value theorem

c) Examine whether $f(x) = 3 + (x - 3)^3$ has an extreme point at x = 3.

GROUP - E

Answer any *five* questions.

5 × 5 =

- 17. Let $B = \{(a,0) \in \mathbb{R}^2 : a \in \mathbb{R}\}$. Show that B is a closed set but not an open set in \mathbb{R}^2 .
- 18. Define $f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}; \ xy \neq 0 \\ 0, \ xy = 0 \end{cases}$

Show that $\lim_{(x,y)\to(0,0)} f(x,y)$ exists but the repeated limits do not exist.

MTMA(HN)-03

hat
19. Define
$$f(x,y) = \begin{cases} (ax+by)\sin\frac{x}{y}; y \neq 0 \\ 0, y = 0 \end{cases}$$
. Is f continuous at $(0, 0, 0, 0) \neq 0$.
4
20. Prove that $f(x,y) = \sqrt{|xy|}$ possesses fist order partial derivatives at $(0, 0)$ but is not differentiable at $(0, 0)$
4
21. Let $f(x,y) = \begin{cases} xy; |x| > |y| \\ -|xy|; |x| < |y| \end{cases}$. Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$. Which condition of Schwarz theorem is not satisfied by f ?
¹c.
22. Transform the equation $y\frac{\partial x}{\partial x} - x\frac{\partial x}{\partial y} = (y-x)z$ by introducing new independent variables $u = x^2 + y^2, v = \frac{1}{x} - \frac{1}{y}$ and the new function $w = \log z - (x+y)$.
¹⁰¹
23. You are given a differentiable function $f(x,y)$. Prove that if the variables x and y are replaced by homogeneous linear functions $x = X(x,y), Y = Y(x,y)$ of x and y, then the obtained function $F(X,Y)$ is related with the given function as follows:
 $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = X\frac{\partial F}{\partial X} + Y\frac{\partial F}{\partial Y}$
24. Justify the existence and uniqueness of the implicit function $y = y(x)$ for the functional equation $y^3 \cos x + y^2 \sin^2 x = 7$ near the point $\left(\frac{\pi}{3}, 2\right)$. Also find $\frac{dy}{dx} \left(\frac{\pi}{3}, 2\right)$.
4 4 1
4 4
4 25. Show that the functions $u = 3x + 2y - z$, $v = x - 2y + z$ and $w = x(x + 2y - z)$.
4 4 1
4 4
4 25. Show that the functions $u = 3x + 2y - z$, $v = x - 2y + z$ and $w = x(x + 2y - z)$.
4 4 1
5 4 1
6 **GROUP - F**
6 **Answer** any two questions. $2 \times 5 = 10$
26. Show that the area bounded by the semicubical parabola $y^2 - ax^3$ and a double ordinate is $\frac{2}{5}$ of the area of the centre of gravity of the first arc of the cycloid $x = a(t - \sin t), y = a(1 - \cos t)$.
27. Find the coordinates of the centre of gravity of the first arc of the cycloid $x = a(t - \sin t), y = a(1 - \cos t)$.
28. If the loop of the curve $2ay^2 = x(x - a)^2$ revolves about the line $y = a$, then using Pappus theorem, find the volume of the solid generated.
29. Show that the moment of inertia of a truncated cone about its axis is $\frac{3M(a^5 - b^5)}{10(a^3 - b^3)}$ where a and b are the radii of the two ends and M is the mass

F-151

+