West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013 PART-I
\section*{MATHEMATICS - Honours}
Paper- II

Candidates are required to give their answers in their own words as far as practicable.
The figures in the margin indicate full marks.

GROUP - A
(Marks: 25)
Answer any five questions.

1. a) If $x, y \in \mathbb{R}$ and $x>0, y>0$ then prove that there exists a natural number n such that $n y>x$.
b) Let T be a bounded subset of $\mathbb{I R}$. If $S=\{|x-y|: x, y \in T\}$, show that Sup $S=\operatorname{Sup} T-\operatorname{Inf} T$. $3+2$
2. a) State Cauchy's second limit theorem. Use it to prove that $\lim _{n \rightarrow \infty} \frac{\{(n+1)(n+2) \ldots(2 n)\}^{\frac{1}{n}}}{n}=\frac{4}{e}$.
b) Prove that the sequence $\left\{x_{n}\right\}$ where
$x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\ldots+\frac{1}{\sqrt{n^{2}+n}}$ converges to 1.
3. a) Prove that the sequence $\left\{x_{n}\right\}$ where $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent.
b) Prove that a non-decreasing sequence which is not bounded above diverges to ∞.
4. a) State Cauchy's general principle of convergence and use it to prove that sequence $\left\{\frac{n-1}{n+1}\right\}$ is convergent.
b) Prove or disprove : Every bounded sequence is a Cauchy sequence. $1+2$
5. a) Prove that a subset of a denumerable set is either finite or denumerable.
b) Prove that the closed interval $[a, b]$ is not denumerable.
6. Prove that every infinite bounded subset of \mathbb{R} has at least one limit point in \mathbb{R}.
7. a) Prove that derived set of a set is a closed set.
b) Which one of the following sets is closed and why ?
(i) $T=\left\{\frac{1}{n}: n \in N\right\}$
(ii) $T \cup\{0\}$.
8. a) If $\lim _{x \rightarrow a} f(\dot{x})=l(\neq 0)$ then prove that there exists a nbd of a where $f(x)$ anc will have the same sign.
b) Prove that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.
9. a) If $f:[0,1] \rightarrow\{0,1\}$ be defined as

$$
f(x)=\left\{\begin{array}{l}
1 \text { when } x \text { is rational } \\
0 \text { when } x \text { is irrational }
\end{array}\right.
$$

show that f is not continuous on $[0,1]$.
b) Is the function f defined as follows piecewise continuous ? If so, find the intervals of continuity of f.

$$
f(x)= \begin{cases}4-x & \text { when } 0 \leq x<1 \\ 4 & \text { when } x=1 \\ 6-x & \text { when } 1<x \leq 2\end{cases}
$$

GROUP - B

(Marks:20)
10. Answer any two questions:
a) If $I_{n}=\int \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{n}}$, then prove that

$$
I_{n}=\frac{1}{2(n-1) a^{2}} \cdot \frac{x}{\left(x^{2}+a^{2}\right)^{n-1}}+\frac{2 n-3}{2(n-1) a^{2}} I_{n-1}, n(\neq 1) \text { being a positive integer. } 4
$$

b) Show that $\Gamma\left(n+\frac{1}{2}\right)=\frac{\Gamma(2 n+1) \sqrt{\pi}}{2^{2 n} \Gamma(n+1)}, n>0$ being an integer.
c) Prove that $B(m, n)=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} \mathrm{~d} x(m>0, n>0)$.
11. Answer any three questions:
a) Show that the pedal of the circle $r=2 a \cos \theta$ with respect to the origin is the cardioid $r=a(1+\cos \theta)$.
b) If ρ_{1} and ρ_{2} are radii of curvatures at two extremities of any chord of the cardioid $r=a(1+\cos \theta)$ passing through the pole, prove that

$$
\begin{equation*}
\rho_{1}^{2}+\rho_{2}^{2}=\frac{16 a^{2}}{9} \tag{4}
\end{equation*}
$$

c) Find the asymptotes of $x^{4}-5 x^{2} y^{2}+4 y^{4}+x^{2}-2 y^{2}+2 x+y+7=0$.
d) Prove that the condition that $x \cos \alpha+y \sin \alpha=p$ should touch

$$
x^{m} y^{n}=a^{m+n} \text { is } p^{m+n} m^{m} n^{n}=(m+n)^{m+n} a^{m+n} \sin ^{n} \alpha \cos ^{m} \alpha
$$

e) Show that the points of inflexion on the curve $y^{2}=(x-a)^{2}(x-b)$ lie on the lit $3 x+a=4 b$.
f) Find the evolute of the curve

$$
x=a(\cos t+t \sin t), \quad y=a(\sin t-t \cos t)
$$

GROUP - C

(Marks: 30)
Answer any three questions.
12. a) Examine whether the equation
$\left(x^{2} y-2 x y^{2}\right) \mathrm{d} x+\left(3 x^{2} y-x^{3}\right) \mathrm{d} y=0$ is exact or not and solve it.
b) Solve $x y\left(1+x y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=1$ reducing Leibnitz's linear equation.
13. a) Find the complete primitive of the equation $x^{2}(y-p x)=p^{2} y$ by reducing it in Clairaut's form.
b) Solve : $(p x-y)\left(p y^{+}+x\right)=a^{2} p$.
14. a) Solve : $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 t=0$, satisfying $x=4, \frac{\mathrm{~d} x}{\mathrm{~d} t}=3$, when $t=0$.
b) Solve : $D^{2}-3 D+2 y=x e^{3 x}+\sin 2 x$, where $D=\frac{\mathrm{d}}{\mathrm{dx}}$.
b) Solve by method of variation of parameters :
a) Solve by method of undetermined coefficient :
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-y=e^{3 x} \cos 2 x-e^{2 x} \sin 3 x$.

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a^{2} y=\sec a x \tag{5}
\end{equation*}
$$

6. a) Solve : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\cot x \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y \operatorname{cosec}^{2} x=0$ by changing the independent variable. 5
b) Solve by reducing normal form

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{2}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(a^{2}+\frac{2}{x^{2}}\right) y=0
$$

17. a) Solve $\left(1+x^{2}\right)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+4 y=0$ by changing the independent variable.
b) Solve by method of operational factors :

$$
\left[(x+3) \mathrm{D}^{2}-(2 x+7) \mathrm{D}+2\right] y=(x+3)^{2} e^{x}
$$

GROUP-D

(Marks : 25)

Answer any five questions.
18. a) Show that the following vectors are coplanar :
$(\vec{a}-2 \vec{b}+\vec{c}),(2 \vec{a}+\vec{b}-3 \vec{c}),(-3 \vec{a}+\vec{b}+2 \vec{c})$ where $\vec{a}, \vec{b}, \vec{c}$ are any three noncoplanar vectors.
b) If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|\vec{a}|=7,|\vec{b}|=3,|\vec{c}|=5$ find the angle between the directions of \vec{b} and $\vec{c}_{:}$.
19. a) Find the unit vector perpendicular to both the vectors $(3 \vec{i}+\vec{j}+2 \vec{k})$ a $(2 \vec{i}-2 \vec{j}+4 \vec{k})$. Also find the angle between them.
b) Show by vector method that the diagonals of a rhombus are at right angles.
20. a) Show that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}\}=\{\vec{a} \vec{b} \vec{c}]^{2}$ where $[1$ denotes the scal triple product.
b) Find the volume of the tetrahedron $A B C D$ by vector method with vertic $A(1,1,-1), B(3,-2,-2), C(5,5,3), D(4,3,2)$.
21. Prove that for two vectors \vec{a} and \vec{b},
$\operatorname{curl}(\vec{a} \times \vec{b})=\vec{a} \operatorname{div} \vec{b}-\vec{b}$ div $\vec{a}+(\vec{b}, \nabla) \vec{a}-(\vec{a} . \nabla) \vec{b}$.
22. a) If vectors \vec{A} and \vec{B} are irrotational then show that the vector $\vec{A} \times \vec{B}$ solenoidal.
b) Find the vector equation of the plane through the point $(8 \vec{i}+2 \vec{j}-3 \vec{k})$ and perpendicular to each of the planes $\vec{r} \cdot(2 \vec{i}-\vec{j}+2 \vec{k})=0$ an $\vec{r} \cdot(\vec{i}+3 \vec{j}-5 \vec{k})=0$.
23. a) Find the equation of the tangent plane to the surface $x z^{2}+x^{2} y-z+1=0$ at the point ($1,-3,2$).
b) Find the maximum value of the directional derivative of $\phi=x^{2}+z^{2}-y^{2}$ at the point (1, 3, 2).
24. a) Show that the vector $\frac{r}{r^{3}}$ where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}, r=|\vec{r}|$ is solenoidal. 3
b) If $\vec{r}=3 t \hat{i}+3 t^{2} \hat{j}+2 t^{3} \hat{k}$, find the value of the box product of $\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}, \frac{\mathrm{~d}^{2} \vec{r}}{\mathrm{~d} t^{2}}, \frac{\mathrm{~d}^{3} \vec{r}}{\mathrm{~d} t^{3}}$.
25. Find the radial and transverse acceleration of a particle moving in a plane curve. 5
26. Prove that $\operatorname{curl}(u \vec{F})=\operatorname{grad} u \times \vec{F}+u(\operatorname{curl} \vec{F})$. Hence prove that if $u \vec{F}=\nabla v$, where u, v are scalar fields and \vec{F} is vector field, then $(\vec{F}$. curl $\vec{F})=0$.

