West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013

> PART - I
> MATHEMATICS - HONOURS
> Paper - I

Duration : 4 Hours]

The figures in the margin indicate full marks.

GROUP - A

Answer any five questions.

1. i) Use congruence to show that $2^{5 n+3}+5^{2 n+3}$ is divisible by 7 , for all $n \geq 1$.
ii) Show that the number of prime integers is infinite.
2. If p is a prime integer and a is any integer such that p does not divide a then sho that $a^{p-1} \equiv 1(\bmod p)$.

Using it show that $1^{p}+2^{p}+\ldots+(p-1)^{p} \equiv 0(\bmod p)$ for any prime $p>2$.
3. i) By Fermat's theorem, show that $a^{12}-b^{12}$ is divisible by 91 if a and b are both prime to 91.
ii) If $d=\operatorname{gcd}(a, b)$ then show that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=d^{2}$.
4. Show that the principal value of the ratio of $(1+i)^{1-i}$ and $(1-i)^{1+i}$ is $\sin (\log 2)+i \cos (\log 2)$.
5. If $\tan (\alpha+i \beta)=\tan \theta+i \sec \theta$ where α, β, θ are real numbers with $0<\theta<\pi$, then show that $e^{2 \beta}=\cot \frac{\theta}{2}$ and $\alpha=n \pi+\frac{\pi}{4}+\frac{\theta}{2}$.
6. i) Find the general solution of $\cos h z=-2$.
ii) Expand $\sin ^{7} \theta$ in a series of sines of multiples of θ.
7. i) Apply Descartes' rule of sign to find the nature of the roots of the equation

$$
\begin{equation*}
3 x^{4}+12 x^{2}+5 x-4=0 \tag{2}
\end{equation*}
$$

ii) Show that the equation $x^{3}-2 x-5=0$ has no negative real root.
8. Let α, β, γ be the roots of $x^{3}+p x^{2}+q=0$. Form the equation whose roots are $\frac{1}{\alpha}+\frac{1}{\beta}+1, \frac{1}{\beta}+\frac{1}{\gamma}+1, \frac{1}{\gamma}+\frac{1}{\alpha}+1$. Hence find the value $(\alpha+\beta+\alpha \beta)(\beta+\gamma+\beta \gamma)(\gamma+\alpha+\gamma \alpha)$.
9. i) Find the equation whose roots are the roots of the equation $x^{4}-8 x^{2}+8 x+6=0$, each diminished by 2.
ii) If $\alpha, \beta, \gamma, \delta$ are roots of $x^{4}+p x^{3}+q x^{2}+r x+s=0$, then find the values of $\sum \alpha^{2} \beta \gamma$ and $\sum \frac{1}{\alpha \beta}$.

GROUP - B

Answer any two questions.
10. i) Let A, B, C, D be non-empty sets. Prove that $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
ii) If $f: A \rightarrow B$ is a mapping and P, Q are non-empty subsets of A, then show that $f(P \cup Q)=f(P) \cup f(Q)$.

Is $f(P \cap Q)=f(P) \cap f(Q)$? Justify your answer.
iii) Find a relation on the set of positive integers which is transitive but neither
11. i) If ρ is an equivalence relation on a non-empty set A then define equivalence class $[a]$ of an element $a \in A$ determined by ρ. Show that, either $[a] \cap[b]=\phi$ or $[a]=[b]$ for any $a, b \in A$.
ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$, for all $x \in \mathbb{R}$ and

$$
g(x)= \begin{cases}x-1, & x \geq 0 \\ -x, & x<0\end{cases}
$$

Find $f \circ g$ and $g \circ f$. Is $f \circ g=g \circ f$?
iii) Let G be a semigroup and for $a, b \in G$, each of the equations $a x=b$ and $y a=b$ has solutions in G. Show that G is a group.
12. i) If for $a \in G, a^{3}=e(=$ identity of $G)$ and $b \in G$ is such that $a b a^{-1}=b^{2}$ th find the order of b.
ii) Let $G L(2, \mathbb{R})$ denote the group of all non-singular 2×2 matrices over Show that $S=\left\{\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right): a \neq 0\right\}$ is a sub-group of $G L(2, \mathbb{R})$. Is this sub-groi commutative ?
iii) Let H be a sub-group of a group G. Show that $K=\left\{g \mathrm{Hg}^{-1}: g \in G\right\}$ is a sub-grou of G. Also show that $|H|=|K|$, where $|H|$ stands for the order of H.
13. i) If R is a ring with unity 1 then show that characteristic of R is n if and only $n .1=0$.
ii) Show that, the set of integers modulo 6 forms a ring with respect to thi addition and multiplication modulo 6 .

Is this an integral domain? Justify.
iii) Prove that, a finite integral domain is a field. Give an example to show that the result is false if the 'finiteness' condition is dropped.

GROUP - C

Answer any three questions.
$3 \times 5=15$.
14. If $A=\left(\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right)$ is an orthogonal matrix, then show that $a+b+c= \pm 1$

Evaluate $\operatorname{det}(\operatorname{adj} A)$.
15. Find the non-singular matrices P and Q such that $P A Q$ is in the normal form and hence find the rank of the matrix $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 1 & 1\end{array}\right]$
16. Without expanding, prove that $\left|\begin{array}{ccc}2 b c-a^{2} & c^{2} & b^{2} \\ c^{2} & 2 c a-b^{2} & a^{2} \\ b^{2} & a^{2} & 2 a b-c^{2}\end{array}\right|=\left(a^{3}+b^{3}+c^{3}-3 a b c\right)^{2}$.
17. Find the values of k for which the system of equations

$$
\begin{aligned}
& x+y-z=1 \\
& 2 x+3 y+k z=3 \\
& x+k y+3 z=2
\end{aligned}
$$

has (i) no solution, (ii) more than one solutions, (iii) unique solution.
18. Reduce the matrix $A=\left(\begin{array}{rrrr}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0\end{array}\right)$ to a row-reduced Echelon form find its rank.
19. Reduce the quadratic form $x^{2}+2 y^{2}+4 z^{2}+2 x y-4 y z-2 z x$ to normal forn that it is positive definite.

GROUP - D

Answer any one question.

20. i) Show that the set of all feasible solutions of an LPP is a convex set.
ii) Use graphical method to solve the following LPP :

Minimize $Z=2 x_{1}+3 x_{2}$
subject to $-x_{1}+2 x_{2} \leq 4$

$$
\begin{aligned}
& x_{1}+x_{2} \leq 6 \\
& x_{1}+3 x_{2} \geq 9 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

iii) How many basic solutions the following system of equations has

$$
\begin{aligned}
& 2 x_{1}-5 x_{2}+x_{3}+3 x_{4}=4 \\
& 3 x_{1}-10 x_{2}+2 x_{3}+6 x_{4}=12
\end{aligned}
$$

Justify your answer and find all basic solutions.
21. i) Prove that $x_{1}=2, x_{2}=1$ and $x_{3}=3$ is a feasible solution of the system of equations
$4 x_{1}+2 x_{2}-3 x_{3}=1$
$-6 x_{1}-4 x_{2}+5 x_{3}=-1$.

Reduce the feasible solution to a basic feasible solution.
ii) A soft drink plant has three machines M_{1}, M_{2}, M_{3}. It produces and sells $500 \mathrm{ml}, 800 \mathrm{ml}$ and 1 Lt . bottles. The capacities of the machines for the production of number of bottles per minute are as follows :

Prod.	500 ml	800 ml	1 Lt.
Machines	100	40	20
M_{1}	60	75	90
M_{2}	40	100	120
M_{3}			

The machines M_{1}, M_{2}, M_{3} can run $8 \mathrm{hrs}, 6 \mathrm{hrs}$ and 4 hrs . respectively per day and 5 days a week. The weekly production of drinks cannot exceed 60,000 Lt. The market can absorb 20,000 bottles of $500 \mathrm{ml}, 7000$ bottles of 800 ml and 5000 bottles of 1 Lt. The profits per bottle on three types are Rs. 2, Rs. 3 and Rs. 5 respectively. The producer wishes to maximize his profit subject to all production and marketing restrictions. Formulate this as an LPP.

GROUP - E

Section - I

Answer any three questions.

22. Reduce the equation $x^{2}+24 x y-6 y^{2}+28 x+36 y+16=0$ to standard form and find the centre and eccentricity of the conic represented by it.
23. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two intersecting straigh lines, then show that the square of the distance of the point of intersection of th straight line from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$.

Show also that the area of the parallelogram formed by them and the pair of straik lines $a x^{2}+2 h x y+b y^{2}-2 g x-2 f y+c=0$ is $\frac{2 c}{\sqrt{h^{2}-a b}}$.
24. A point moves so that the distance between the feet of the perpendiculars from it the straight lines given. by the equation $a x^{2}+2 h x y+b y^{2}=0$ is a constant $2 d . \mathrm{S}$ that its locus is $\left(x^{2}+y^{2}\right)\left(h^{2}-a b\right)=d^{2}\left[(a-b)^{2}+4 h^{2}\right]$.
25. If the sum of the ordinates of two points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is b, show that the locus of the pole of the chord which joins them is $b^{2} x^{2}+a^{2} y^{2}=2 a^{2} b y$.
26. Show that the condition that the straight line $\frac{l}{r}=a \cos \theta+b \sin \theta$ may touch the conic
$\frac{l}{r}=1-e \cos \theta$ is $(a l+e)^{2}+b^{2} l^{2}=1$.
5

Section - II

Answer any three questions.
27. Show that the pair of straight lines whose direction cosines are given by $3 l m-4 l n+m n=0$ and $l+2 m+3 n=0$ are at right angle.
28. i) Find the equation of the plane through the point $\left(x_{1}, y_{1}, z_{1}\right)$ parallel to the

$$
\begin{equation*}
\text { plane } a x+b y+c z=0 \tag{2}
\end{equation*}
$$

ii) Find the equation of the plane which passes through the point (2, 1, -1) and is orthogonal to each of the planes $x-y+z=1$ and $3 x+4 y-2 z=0$.
29. If P be the point $(2,3,-1)$, find the equation of the plane through P at right angle to the straight line $O P$ where O is the origin.

MTMA(HN)-01

118
30. Find the image of the point $(-3,8,4)$ in the plane $6 x-3 y-2 z+1=0$. 31. Find the distance of the point $(4,1,1)$ from the straight lin $x-2 y-z=4$. Find the equation of the perpendicular and also find perpendicular.

