West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013

PART – I MATHEMATICS — HONOURS Paper – I

Duration : 4 Hours]

| Full Marks : 10

The figures in the margin indicate full marks.

GROUP - A

Answer any five questions.

 $5 \times 5 = 2$

1. i) Use congruence to show that $2^{5n+3} + 5^{2n+3}$ is divisible by 7, for all $n \ge 1$.

ii) Show that the number of prime integers is infinite.

2. If p is a prime integer and a is any integer such that p does not divide a then sho

that $a^{p-1} \equiv 1 \pmod{p}$.

Using it show that $1^p + 2^p + \dots + (p-1)^p \equiv 0 \pmod{p}$ for any prime p > 2. 3 +

108

3. i) By Fermat's theorem, show that $a^{12} - b^{12}$ is divisible by 91 if a and b are both

prime to 91.

ii) If d = gcd(a, b) then show that $gcd(a^2, b^2) = d^2$.

4. Show that the principal value of the ratio of $(1+i)^{1-i}$ and $(1-i)^{1+i}$ is $\sin(\log 2) + i \cos(\log 2)$.

5. If $\tan(\alpha + i\beta) = \tan\theta + i \sec\theta$ where α , β , θ are real numbers with $0 < \theta < \pi$, then show

that $e^{2\beta} = \cot \frac{\theta}{2}$ and $\alpha = n\pi + \frac{\pi}{4} + \frac{\theta}{2}$.

25

3

2

2

6.

7.

i) Find the general solution of $\cos h z = -2$.

ii) Expand $\sin^7 \theta$ in a series of sines of multiples of θ .

i) Apply Descartes' rule of sign to find the nature of the roots of the equation

 $3x^4 + 12x^2 + 5x - 4 = 0$

2

3

3

2

2

5

ii) Show that the equation $x^3 - 2x - 5 = 0$ has no negative real root.

8. Let α , β , γ be the roots of $x^3 + px^2 + q = 0$. Form the equation whose

roots are $\frac{1}{\alpha} + \frac{1}{\beta} + 1$, $\frac{1}{\beta} + \frac{1}{\gamma} + 1$, $\frac{1}{\gamma} + \frac{1}{\alpha} + 1$. Hence find the value of

 $(\alpha + \beta + \alpha\beta)(\beta + \gamma + \beta\gamma)(\gamma + \alpha + \gamma\alpha).$

9. i) Find the equation whose roots are the roots of the equation $x^4 - 8x^2 + 8x + 6 = 0$, each diminished by 2.

ii) If α , β , γ , δ are roots of $x^4 + px^3 + qx^2 + rx + s = 0$, then find the values of

$$\sum \alpha^2 \beta \gamma$$
 and $\sum \frac{1}{\alpha \beta}$.

GROUP - B

Answer any two questions.

 $2 \times 10 = 20$

10. i) Let A, B, C, D be non-empty sets. Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

3

lose

of

5

tion

3

of

2

= 20

D).

3

ii) If $f: A \rightarrow B$ is a mapping and P, Q are non-empty subsets of A, then show that

$$f(P\cup Q)=f(P)\cup f(Q).$$

Is
$$f(P \cap Q) = f(P) \cap f(Q)$$
? Justify your answer. $3+2$

iii) Find a relation on the set of positive integers which is transitive but neither reflexive nor symmetric.

11. i) If ρ is an equivalence relation on a non-empty set A then define equivalence class [a] of an element $a \in A$ determined by ρ . Show that, either $[a] \cap [b] = \phi$ or [a] = [b] for any $a, b \in A$. 1+2

ii) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$, for all $x \in \mathbb{R}$ and

 $g(x) = \begin{cases} x-1, x \ge 0\\ -x, x < 0 \end{cases}.$

Find fog and gof. Is fog = gof?

2 + 1

4

iii) Let G be a semigroup and for $a, b \in G$, each of the equations ax = b and ya = b

has solutions in G. Show that G is a group.

12. i) If for $a \in G$, $a^3 = e$ (= identity of G) and $b \in G$ is such that $aba^{-1} = b^2$ th find the order of b.

ii) Let $GL(2, \mathbb{R})$ denote the group of all non-singular 2×2 matrices over

Show that $S = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a \neq 0 \right\}$ is a sub-group of *GL* (2, *IR*). Is this sub-group

commutative ?

- iii) Let *H* be a sub-group of a group *G*. Show that $K = \{gHg^{-1} : g \in G\}$ is a sub-grou of *G*. Also show that |H| = |K|, where |H| stands for the order of *H*.
- 13. i) If R is a ring with unity 1 then show that characteristic of R is n if and only $n \cdot 1 = 0$.
 - ii) Show that, the set of integers modulo 6 forms a ring with respect to the addition and multiplication modulo 6.

Is this an integral domain ? Justify.

3 +]

iii) Prove that, a finite integral domain is a field. Give an example to show that the result is false if the 'finiteness' condition is dropped. 3 + 1

5

5

5

GROUP - C

Answer any *three* questions.
$$3 \times 5 = 15$$

14. If $A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$ is an orthogonal matrix, then show that $a + b + c = \pm 1$.

Evaluate det (adj A).

15. Find the non-singular matrices P and Q such that PAQ is in the normal form and

hence find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. 5

16. Without expanding, prove that
$$\begin{vmatrix} 2bc - a^2 & c^2 & b^2 \\ c^2 & 2ca - b^2 & a^2 \\ b^2 & a^2 & 2ab - c^2 \end{vmatrix} = (a^3 + b^3 + c^3 - 3abc)^2.$$

17. Find the values of k for which the system of equations

x + y - z = 1

2x + 3y + kz = 3

x + ky + 3z = 2

has (i) no solution, (ii) more than one solutions, (iii) unique solution.

18. Reduce the matrix $A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix}$ to a row-reduced Echelon form

find its rank.

19. Reduce the quadratic form $x^2 + 2y^2 + 4z^2 + 2xy - 4yz - 2zx$ to normal for that it is positive definite.

GROUP - D

114

Answer any one question.

i) Show that the set of all feasible solutions of an LPP is a convex set.

ii) Use graphical method to solve the following LPP :

Minimize $Z = 2x_1 + 3x_2$

subject to $-x_1 + 2x_2 \le 4$

 $x_1 + x_2 \le 6$ $x_1 + 3x_2 \ge 9$

and $x_1, x_2 \ge 0$

$$2x_1 - 5x_2 + x_3 + 3x_4 = 4$$

$$3x_1 - 10x_2 + 2x_3 + 6x_4 = 12$$

Justify your answer and find all basic solutions.

20.

21.

i) Prove that $x_1 = 2$, $x_2 = 1$ and $x_3 = 3$ is a feasible solution of the system of

equations

$$4x_1 + 2x_2 - 3x_3 = 1$$

 $-6x_1 - 4x_2 + 5x_3 = -1.$

Reduce the feasible solution to a basic feasible solution.

1+4

ii)

A soft drink plant has three machines M_1, M_2, M_3 . It produces and sells 500 ml, 800 ml and 1 Lt. bottles. The capacities of the machines for the production of number of bottles per minute are as follows : 5

Prod. Machines	500 ml	800 ml	1 Lt.
M ₁	100	40	20
M ₂	60	75	90
M ₃	40	100	120

The machines M_1, M_2, M_3 can run 8 hrs, 6 hrs and 4 hrs. respectively per day and 5 days a week. The weekly production of drinks cannot exceed 60,000 Lt. The market can absorb 20,000 bottles of 500 ml, 7000 bottles of 800 ml and 5000 bottles of 1 Lt. The profits per bottle on three types are Rs. 2, Rs. 3 and Rs. 5 respectively. The producer wishes to maximize his profit subject to all production and marketing restrictions. Formulate this as an LPP.

GROUP - E

116

Section - I

Answer any three questions.

 $3 \times 5 = 15$

22. Reduce the equation $x^2 + 24xy - 6y^2 + 28x + 36y + 16 = 0$ to standard form and find

the centre and eccentricity of the conic represented by it.

23. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two intersecting straight

lines, then show that the square of the distance of the point of intersection of the

straight line from the origin is $\frac{c(a+b)-f^2-g^2}{ab-h^2}$.

Show also that the area of the parallelogram formed by them and the pair of straig

lines
$$ax^2 + 2hxy + by^2 - 2gx - 2fy + c = 0$$
 is $\frac{2c}{\sqrt{h^2 - ab}}$.

24. A point moves so that the distance between the feet of the perpendiculars from it

the straight lines given by the equation $ax^2 + 2hxy + by^2 = 0$ is a constant 2d. S

that its locus is $(x^2 + y^2)(h^2 - ab) = d^2[(a - b)^2 + 4h^2].$

5

5

25. If the sum of the ordinates of two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is b, show that the

locus of the pole of the chord which joins them is $b^2x^2 + a^2y^2 = 2a^2by$.

26. Show that the condition that the straight line $\frac{l}{r} = a \cos \theta + b \sin \theta$ may touch the conic

$$\frac{l}{2} = 1 - e \cos \theta \text{ is } (al + e)^{2} + b^{2} l^{2} = 1.$$

= 15

find

5

ight

the

aight

5

it on

Show

5

Section - II

Answer any *three* questions.
$$3 \times 5 = 15$$

27. Show that the pair of straight lines whose direction cosines are given by 3lm - 4ln + mn = 0 and l + 2m + 3n = 0 are at right angle. 5

28. i) Find the equation of the plane through the point (x_1, y_1, z_1) parallel to the

plane ax + by + cz = 0.

ii) Find the equation of the plane which passes through the point (2, 1, -1) and is

orthogonal to each of the planes x - y + z = 1 and 3x + 4y - 2z = 0. 3

29. If P be the point (2, 3, -1), find the equation of the plane through P at right angle to

the straight line OP where O is the origin.

5

2

- . 118
- 30. Find the image of the point (-3, 8, 4) in the plane 6x 3y 2z + 1 = 0.
- 31. Find the distance of the point (4, 1, 1) from the straight lin
 - x-2y-z=4. Find the equation of the perpendicular and also find

perpendicular.