West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 PART-III MATHEMATICS - (HONOURS) Paper- VIII-A

Duration : 2 Hours
Full Marks :

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

> GROUP - A
> SECTION - I
> (Linear Algebra)

Answer any one question :

1. a) Let V and W be vector spaces over a field F. If $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is a basis V and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ are arbitrary elements in W, then show that there exists on and only one linear mapping $T: V \rightarrow W$ such that $T\left(\alpha_{i}\right)=\beta_{i}, i=1, \ldots n$.
b) Show that $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x-y, x+2 y, y+3 z)$, $(x, y, z) \in R^{3}$ is a linear map. Also prove that T is invertible and find T^{-1}.
2. a) If V and W are finite dimensional vector spaces over a field F then show that V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
b) Find the linear map $T: R^{3} \rightarrow R^{3}$, if
$T(0,1,1)=(1,0,1)$
$T(1,0,1)=(2,3,4)$
$T(1,1,0)=(1,2,3)$
Determine the matrix of T with respect to the standard basis of R^{3}.
c) If $T: V \rightarrow W$ is an invertible linear map then show that $T^{-1}: W \rightarrow V$ is also a linear map.

SECTION-II

(Modern Algebra)

Answer any one question :

3. a) If $\phi: G \rightarrow G^{\prime}$ is an isomorphism, where G and G^{\prime} are finite groups then prove that $O(a)=O(\phi(a))$ for every $a \in G$. Use the result to show that the groups $\left(Z_{4},+\right)$ and Klein's four group V are not isomorphic.
b) If (H, o) is a normal subgroup of a group (G, o), then prove that the quotient group $\left(G / H,{ }^{*}\right)$ is Abelian if and only if x oyo $x^{-1} \circ y^{-1} \in H, \forall x, y \in G$.
4. a) If H is a subgroup of a group G and $[G: H]=2$, then prove that H is normal in G.
b) If ϕ is a homomorphism from a group (G, o) to a group $\left(G^{\prime}, *\right)$ then prove that ϕ is one-to-one if and only if $\operatorname{ker} \phi=\left\{e_{G}\right\}$, where e_{G} is the identity element in G.
K is a multiplicative commutative group of order 8. Prove that $\phi: K \rightarrow K$ defined by $\phi(x)=x^{3}, x \in G$ is an isomorphism.

SECTION - III

(Boolean Algebra)
Answer any one question :
5. a) In a Boolean algebra B, show that,
$(a+b)(b+c)(c+a)=a b+b c+c a$, for all $a, b, c \in B$.
b) Express the Boolean expression
$\left(\left(x^{\prime}+y\right)^{\prime}+\left(x^{\prime}+y\right)\right)^{\prime}$ in CNF in the variables present in the expression.
6. a) Change the following function from CNF to the DNF :
$(a+b+c)\left(a^{\prime}+b^{\prime}+c\right)\left(a+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b+c^{\prime}\right)$.
b) We wish a light in a room to be controlled independently by three wall switches located at the three entrances of the room in such a way that flicking any one of them will change the state of the light (on to off and off to on). Design a simple series-parallel switching circuit which will do the required job.

GROUP-B

(Differential Equations-III)

Answer any one question :
7. a) Obtain the series solution of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 y=0$ satisfying $y(0)=1$ and y
b) Find the inverse Laplace transform of $\frac{5 s+3}{(s-1)\left(s^{2}+2 s+5\right)}$.
c) Using Laplace transform solve
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{dx}}+2 y=e^{-x}$, when $y \cdot(0)=y^{\prime}(0)=0$.
8.
a) Obtain series solution of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=0$ near the ordinary point $x=0$.
b) Find the inverse Laplace transform of $\frac{s+4}{s(s-1)\left(s^{2}+4\right)}$.
c) Using the method of Laplace transform solve
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{2 \mathrm{~d} x}{\mathrm{~d} t}+x=3 t e^{-t}$, when $x(0)=4, x^{\prime}(0)=2$.

GROUP-C

(Tensor Calculus)
Answer any one question.
9. a) Show that the components of a tensor of type $(0,2)$ can be expres sum of a symmetric tensor and a skew symmetric tensor of the same
b) If $a_{i j}$ is a skew symmetric tensor then prove that
$\left(\delta_{i}^{l} \delta_{l}^{k}+\delta_{l}^{l} \delta_{j}^{k}\right) a_{i k}=0$.
c) Show that the only non-vanishing Christoffel symbols of the second kind for V^{2} with line element $\mathrm{ds}{ }^{2}=\left(\mathrm{d} x^{1}\right)^{2}+\sin ^{2} x^{1}\left(\mathrm{~d} x^{2}\right)^{2}$ are $\left\{\begin{array}{c}1 \\ 22\end{array}\right\}=-\sin x^{1}$ and $\left\{\begin{array}{c}2 \\ 12\end{array}\right\}=\left\{\begin{array}{c}2 \\ 21\end{array}\right\}=\cot x^{1}$.
10. a) Show that $[i j, k]+[k j, i]=\frac{\partial g_{i k}}{\partial x^{j}}$. Use it to show that for any symmetric tensor $a^{i j}$.
$a^{j k}[i j, k]=\frac{1}{2} a^{j k} \frac{\partial g_{j k}}{\partial x^{i}}$.
b) If A^{i} and B^{i} are two non-null vectors such that $g_{i j} U^{i} U^{j}=g_{i j} V^{i} V^{j}$ where $U^{i}=A^{i}+B^{i}$ and $V^{i}=A^{i}-B^{i}$, then show that A^{i} and B^{i} are orthogonal.
c) Show that $g_{i k, j}=0$ and $\delta_{k, j}^{i}=0$. $(2+3)+2+(2+1)$

