B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 PART-III

MATHEMATICS - Honours

Paper-VI

Duration : 4 Hours
Full Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A
(Marks:50)
(Probability and Statistics)
Answer any two questions from Q. Nos. 1 to 3 and any one from Q. Nos. 4 and 5.

1. Answer any three of the following questions:
a) What is meant by the term 'statistical regularity' ? Explain how the frequency definition of the probability of a random event related to the concept of statistical regularity.

Starting from the frequency definition of probability establish the following :

$$
\begin{aligned}
& P\left(A_{1}+A_{2}+\ldots .+A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots . .+P\left(A_{n}\right) \text { where } A_{i} \text { s are mutually } \\
& \text { exclusive random events for } i=1,2, \ldots . . n .
\end{aligned}
$$

b) State and prove Bayes' theorem.
c) If the events A and B are independent then prove that the events \bar{A} and B are independent. Consider events A and B such that $P(A)=\frac{1}{4}, P\left(\frac{B}{A}\right)=\frac{1}{2}, P\left(\frac{A}{B}\right)=\frac{1}{4}$. Find $P\left(\frac{\bar{A}}{\bar{B}}\right)$ and $P\left(\frac{A}{\bar{B}}\right)$.
d) Four students have identical umbrellas which they keep in some definite । while attending class. After the class each student select an umbrell random and goes home. What is the probability that at least one umbrella to its original owner ?
e) If $\left\{A_{n}\right\}$ be a monotone sequence of random events then prove $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$.
2. Answer any three questions of the following:
a) For any three random events A, B and C establish the following :

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+P(A \cap B \cap C)
$$

b) If $F(x)$ be the distribution function of a random variable X, then prove that
i) $\quad F(a) \leq F(b)$ if $a<b$
ii) $\quad F(x) \rightarrow F(a)$ as $x \rightarrow a+0$
iii) $\quad F(a)-x \rightarrow a-0 \quad F(x)=P(X=a)$.
c) In the equation $x^{2}+2 x-q=0, q$ is a random variable uniformly distributed o the interval (0,2). Find the distribution function of the larger root.
d) Define Poisson distribution. Prove that the sum of two independent Poiss variates having parameters μ_{1} and μ_{2} is a Poisson variate having parame $\mu_{1}+\mu_{2}$.
e) If the probability density function of a random variable X is given $f(x)=\frac{e^{2}}{\sqrt{\pi}} e^{-\left(x^{2}+2 x+3\right)},-\infty<x<\infty$, find the expectation and variance of distribution.
3. Answer any three of the following questions :
a) Prove that under certain conditions stated by you, the binomial distribution tends to Poisson distribution in the limits.
$1+4$
b) If X be a normal (m, σ) variate then prove that, $\mu_{2 r+2}=\sigma^{2} \mu_{2 r}+\sigma^{3} \frac{d \mu_{2 r}}{d \sigma}$. Hence find the coefficient of Kurtosis β of this distribution. $3+2$
c) State and prove Tchebycheff's inequality.
d) If $\left\{X_{i}\right\}$ be a sequence of independent random variable such that for each i, $E\left(X_{i}\right)=m_{i}, \operatorname{Var} X_{i}=\sigma_{i}^{2}<\sigma^{2}<\infty$, use Tchebycheff's inequality to show that $\sum_{i=1}^{n} \frac{X_{i}}{n}=\sum_{i=1}^{n} \frac{m_{i}}{n} \xrightarrow[\text { in } p]{ } 0$ as $n \rightarrow \infty$.
e) State Bernoulli's theorem.

Also state the law of large numbers. Obtain Bernoulli's theorem as a particular case of the law of large numbers for equal components.
4. a) Explain what are meant by a statistic and its sampling distribution.

Let $x_{1}, x_{2}, \ldots ., x_{n}$ be a random sample of size. $n(>1)$ from a normal (m, σ) population. Find the sampling distribution of the statistic $t=\frac{(\bar{x}-m) \sqrt{n}}{s}$, where \bar{x} is the sample mean and $(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$.
b) A random sample $\left(x_{1}, x_{2}, \ldots . . x_{n}\right)$ of size n is taken from a population with

$$
\sum_{i}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

variance σ^{2}. If $\mathrm{S}^{2}=\frac{\sum_{i=1}^{n-1}}{\left.n-x_{i}-\bar{x}\right)}, \bar{x}=\frac{1}{n} \sum_{i=i}^{n} x_{i}$, show that the variance of the sampling distribution of S^{2} is given by $\frac{1}{n}\left\{\mu_{4}-\frac{n-3}{n-1} \sigma^{4}\right\}$, where μ_{4} is the fourth order central moment of the population.
c) In a random sample of 400 articles 40 are found to be defective. Obtain 95 confidence interval for the true proportion of defectives in the population such articles. Given $\int_{0}^{1.96} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=0.4750$
5. a) Explain the following terms with examples :
i) Null hypothesis,
ii) Alternative hypothesis.

Explain the concept of a critical region and power of a test.
b) For the normal (m, σ) population, where m is known, test the null hypothesis $H_{0}: \sigma=\sigma_{0}$ against an alternative $H_{1}: \sigma=\sigma_{1}$ on the basis of a sample $\left(x_{1}, x_{2}, \ldots . x_{n}\right)$ from the population.
c) Find the maximum likelihood estimator of the parameters of a $(n, \sigma$ population on the basis of a random sample of size n drawn from th population. Examine whether the estimators are unbiased and consistent.

GROUP - B
(Marks : 50)
(Numerical Analysis and Computer Programming)
Answer any three questions from Section - I and any two from Section - II.

SECTION - I

(Marks : 30)
6. a) What are the different sources of computational errors in a numerical computational work ? Two lengths X and Y are measured approximately up to 3s as $X=3.32 \mathrm{~cm}$ and $Y=5.39 \mathrm{~cm}$. Estimate the error in the computed value of $X+Y$.
b) Define the k th order difference of a function $f(x)$. Prove also that for equally spaced interpolating points $x_{i}=x_{0}+i h, h>0, \quad i=0,1, \ldots . ., n$ $\Delta_{y_{0}}^{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y_{k-i}$ where $y_{i}=f\left(x_{i}\right)$.
7. a) Define divided difference of two arguments x_{0}, x_{1} and prove that $f\left(x_{0}, x_{1}, \ldots . ., x_{n}\right)=\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots . .\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots . .\left(x_{i}-x_{n}\right)} .1+4$
b) Obtain Lagrange's interpolation formula (without the error term).
8. a) Explain the Regua-Falsi method in finding a real root of the equation $f(x)=0$.

State where it is different from secant method.
b) Describe Gauss' elimination method for numerical solution of a system of n linear equations with n variables. Give estimates of the 'count' number of this method for large n.
9. a) Describe Gauss' elimination method to solve numerically a system of n linear equations with n unknown variables. What are the demerits of this method and how can it be avoided?
b) Describe Bisection method for computing a simple real root of $f(x)=0$. Give a geometrical interpretation of the method and also the error estimate.
10. Explain briefly Euler's method to solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y), y=y_{0}$ when $x=x_{0}$. How can the method be modified?

SECTION - II

(Marks: 20)
11. Answer any four of the following :
i) What is memory ? Write the name of three types of memory that are used modern computers.
ii) What are the functions of ALU ?
iii) Write a short note on software.
iv) Draw a flow chart to find the HCF of two distinct positive integers m and n.
v) Use 2's complement to compute $(110110)_{2}-(100100)_{2}$.
vi) Find the CNF of $x y^{\prime}+x^{\prime} y$.
vii) Draw a flowchart to obtain the LCM of two positive integers.
12. a) Write a FORTRAN 77 - program to arrange the following set of real numbers ascending order :
$10 \cdot 1,3 \cdot 2,7 \cdot 5,13 \cdot 9,9 \cdot 4,14 \cdot 1,8 \cdot 5,1 \cdot 9$.
b) Given the values of a, b, c, the lengths of three line segments. Write

FORTRAN program to test whether they can form a triangle or not.
13. a) Explain the uses of 'switch' and 'break' statements in C with suitable examples.
b) Write a C-program to compute the following sum $S=1^{4}+3^{4}+5^{4}+\ldots$. until S remains less than 10,000 .

