West Bengal State University

B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012

Part - II

MATHEMATICS - HONOURS
Paper - III

Duration : 4 Hours
[Maximum Marks : 100

The figures in the margin indicate full marks.

GROUP - A

Answer any three questions.

1. Solve the equation:

$$
2 x^{5}-7 x^{4}-x^{3}-x^{2}-7 x+2=0
$$

2. Solve the equation by Cardan's method :

$$
28 x^{3}-9 x^{2}+1=0
$$

3. Solve the equation by Ferrari's method :

$$
x^{4}-9 x^{3}+28 x^{2}-38 x+24=0
$$

4. Find the special roots of the equation $x^{24}-1=0$ and deduce that

$$
\cos \frac{\pi}{12}=\frac{\sqrt{3}+1}{2 \sqrt{2}}, \cos \frac{5 \pi}{12}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

5. a) If $a_{1}, a_{2}, a_{3}, a_{4}$ be distinct positive numbers and
$s=a_{1}+a_{2}+a_{3}+a_{4}$ then show that

$$
\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\frac{s}{s-a_{3}}+\frac{s}{s-a_{4}}>5 \frac{1}{3}
$$

b) Show that $(n+1)^{n}>2^{n} n$!
6. a) If x, y, z be positive rational numbers then show that

$$
\left(\frac{x^{2}+y^{2}+z^{2}}{x+y+z}\right)^{x+y+z} \geq x^{x} y^{y} z^{z}
$$

b) If a, b, c be all positive and $a b c=k^{3}$, then prove that

$$
(1+a)(1+b)(1+c) \geq(1+k)^{3}
$$

7. a) Let \equiv be an equivalence relation on the set \mathbb{Z} of integers given by $a \equiv b$ if $b-a$ is divisible by 8 . For any $a \in \mathbb{Z}$ let $|a|$ denote its equivalence class under this equivalence relation. Let \mathbb{Z}_{8} denote the set of all equivalence classes under this equivalence relation. Let + be an operation on \mathbb{z}_{8} given by $\{a|+|b|=\{a+b \mid$. Show that \mathbb{z}_{8} is a finite cyclic group. Write all the generators of $\mathbb{z} 8$. $3+2$
b) Let G be a group and H be a subgroup of G. Show that any left coset of H other than H is not a subgroup of G.
c) Let S_{3} denote the group of permutations of $\{1,2,3\}$. Write all the subgroups of S_{3}.
8. a) Prove that any subgroup of a cyclic group is cyclic.
b) Let G be a finite group of order n and $a \in G$. Show that n is divisible by the order of a.

GROUP - B

Answer any one question.

GROUP - C

Answer any two questions.
9. a) Let A and B be two subspaces of a real vector space V. Show that the set $S=\{a+b: a \in A, b \in B\}$ is a subspace of V. Let W be a subspace of V that $A, B \subseteq W$. Show that $S \subseteq W$.
b) Let $W=\left\{(x, y, z) \in \mathbb{R}^{3}: x-y+2 z=0\right\}$. Show that W is a subspace of Find a basis of W.
10. a) Let A be a $m \times p$ matrix and B be a $p \times n$ matrix over \mathbb{R}. Show that $A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$.
b) Find for what values of a and b, the following system of equations has solution, (ii) unique solution. (iii) infinite number of solutions :

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+a z=b
\end{aligned}
$$

11. a) Let λ be a characteristic value of a real skew symmetric square matrix order n. Show that either $\lambda=0$ or λ is purely imaginary.
b) State and prove Cayley-Hamilton theorem for a square matrix.
12. a) Let V be a Euclidean space. Prove that for any $\alpha, \beta \in V,\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$.
b) Define an orthogonal set of vectors in a Euclidean space. Show that orthogonal set of non-null vectors in a Euclidean space is linearly independer
c) Apply Gram-Schmidt orthonormalization process to the set of vectors
$\{(1,0,1),(1,0,-1),(1,3,4)\}$ to obtain an orthonormal basis of \mathbb{R}^{3} the standard inner product.

GROUP - D

Answer any two questions.

$$
2 \times 10=20
$$

such
$3+2$
14. a) State Cauchy's condensation test for convergence or divergence of a series of positive terms. Show that

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}} \text { converges if } p>1 \text { and diverges if } p \leq 1
$$

b) Show that the function $\cos \frac{1}{x}$ defined in $0<x<1$ is not uniformly continuous there.
15. a) State and prove the Inermediate Value Theorem for a function continuous in a closed interval.
b) A function $f:[a, b] \rightarrow R$ is differentiable on $|a, b|$ such that the derived function $f^{\prime}:|a, b| \rightarrow R$ is a continuous function. Prove that \exists a positive constant k such that for any pair of points $x_{1}, x_{2} \in\{a, b \mid$

$$
\begin{equation*}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq k\left|x_{2}-x_{1}\right| \tag{3}
\end{equation*}
$$

c) Prove that an absolutely convergent series is convergent.
16. a) Prove that inequality $0<\frac{1}{\log (1+x)}-\frac{1}{x}<1 \quad(x>0)$.
b) If $y=\left(x^{2}-1\right)^{n}$, prove that
$\left(1-x^{2}\right) y_{n+2}-2 x y_{n+1}+n(n+1) y_{n}=0$.
Deduce that $u=\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2}-1\right)^{n}$ is a solution of the differential equation $\left(1-x^{2}\right) \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} u}{\mathrm{~d} x}+n(n+1) u=0$.
c) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{1 / x^{2}}$.

GROUP - E

Answer any five questions.
17. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x, y \in Q\right\}$. Show that S is neither open nor closed in \mathbb{R}^{2}.
18. Define $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}+y^{2}} & : x^{2}+y^{2} \neq 0 \\ 0 & : x^{2}+y^{2}=0\end{array}\right.$

Show that $f(x, 0)$ is continuous at $x=0$ and $f(0, y)$ is continuous at $y=0$ b $f(x, y)$ is not continuous at $(0,0)$.
19. Define $f(x, y)=\left\{\begin{array}{cl}\frac{x y}{\sqrt{x^{2}+y^{2}}}:(x, y) \neq(0,0) \\ 0 \quad:(x, y)=(0,0)\end{array}\right.$

Show that f is not differentiable at $(0,0)$ though f is continuous at $(0,0)$.
20. Let $f(x, y)=\left\{\begin{array}{c}\left(x^{2}+y^{2}\right) \log \left(x^{2}+y^{2}\right):(x, y) \neq(0,0) \\ 0 \quad:(x, y)=(0,0)\end{array}\right.$

Show that f does not satisfy all the conditions of Schwarz' theorem but
$f_{x y}(0,0)=f_{y x}(0,0)$.
21. If $u(x, y)=\varphi(x y)+\sqrt{x y} \psi\left(\frac{y}{x}\right), x \neq 0, y \neq 0$ where φ and ψ are twice differentiable functions, prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}-y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$.
22. Transform the equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=z^{2}$ by introducing new independent variables $u=x, v=\frac{1}{y}-\frac{1}{x}$ and the new function $w=\frac{1}{z}+\frac{1}{x}$.
23. If $H(x, y)$ be a homogeneous function of x and y of degree n having continuous first order partial derivatives and $u=\left(x^{2}+y^{2}\right)^{-\frac{n}{2}}$, show that

$$
\frac{\partial}{\partial x}\left(H \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(H \frac{\partial u}{\partial y}\right)=0
$$

24. Justify the existence and uniqueness of the implicit function $y=y(x)$ for the functional equation $2 x y-\log (x y)=2 e-1$ near the point $(1, e)$. Also find

$$
\left.\frac{\mathrm{dy}}{\mathrm{~d} x}\right|_{(1, e)}
$$

25. Show that the functions $u=\frac{x}{y-z}, v=\frac{y}{z-x}$ and $w=\frac{z}{x-y}$ are dependent and find the relation between them.

GROUP - F

Answer any two questions.
26. Find the area of the portion of the circle $x^{2}+y^{2}=1$ which lies inside the parabo $y^{2}=1-x$.
27. Show that the volume of the solid obtained by revolving the cardioid $r=a(1+\cos)$ about the initial line is $\frac{8}{3} \pi a^{3}$.
28. Find the centroid of the area in the first quadrant bounded by $y=x^{2}$ and $y=x^{3}$.
29. Prove that the moment of inertia of a solid right circular cone of height h and sen vertical angle α about its axis is $\frac{3}{10} m h^{2} \tan ^{2} \alpha$.

