MTMA (HN)-03

West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 Part – II

72

MATHEMATICS — HONOURS

Paper - III

Duration : 4 Hours

[Maximum Marks : 100

The figures in the margin indicate full marks.

GROUP - A

Answer any three questions.

 $3 \times 5 = 15$

1. Solve the equation :

 $2x^5 - 7x^4 - x^3 - x^2 - 7x + 2 = 0$

2. Solve the equation by Cardan's method :

 $28x^3 - 9x^2 + 1 = 0.$

3. Solve the equation by Ferrari's method :

 $x^4 - 9x^3 + 28x^2 - 38x + 24 = 0.$

4. Find the special roots of the equation $x^{24} - 1 = 0$ and deduce that

 $\cos \frac{\pi}{12} = \frac{\sqrt{3}+1}{2\sqrt{2}}$, $\cos \frac{5\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$.

5. a) If a_1 , a_2 , a_3 , a_4 be distinct positive numbers and

 $s = a_1 + a_2 + a_3 + a_4$ then show that

$$\frac{s}{s-a_1} + \frac{s}{s-a_2} + \frac{s}{s-a_3} + \frac{s}{s-a_4} > 5\frac{1}{3}.$$

b) Show that $(n+1)^n > 2^n n!$

3 + 2

73

6.

s: 100

5 = 15

a) If x, y, z be positive rational numbers then show that

$$\left(\frac{x^2 + y^2 + z^2}{x + y + z}\right)^{x + y + z} \ge x^x y^y z^z.$$

b)

If a, b, c be all positive and $abc = k^3$, then prove that

$$(1+a)(1+b)(1+c) \ge (1+k)^3$$
.

GROUP - B

Answer any one question.

 $1 \times 10 = 10$

4

3 + 2

- 7. a) Let \equiv be an equivalence relation on the set \mathbb{Z} of integers given by $a \equiv b$ if b a is divisible by 8. For any $a \in \mathbb{Z}$ let [a] denote its equivalence class under this equivalence relation. Let \mathbb{Z}_8 denote the set of all equivalence classes under this equivalence relation. Let + b be an operation on \mathbb{Z}_8 given by [a] + [b] = [a + b]. Show that \mathbb{Z}_8 is a finite cyclic group. Write all the generators of \mathbb{Z}_8 . 3+2
 - b) Let G be a group and H be a subgroup of G. Show that any left coset of H other than H is not a subgroup of G. 2
 - c) Let S₃ denote the group of permutations of { 1, 2, 3 }. Write all the subgroups of S₃.
- 8. a) Prove that any subgroup of a cyclic group is cyclic.
 - b) Let G be a finite group of order n and $a \in G$. Show that n is divisible by the order of a.

c) Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 4 & 2 \end{pmatrix}$. Find $\sigma\tau$. Is $\sigma\tau$ an even permutation?

3 + 2

MTMA (HN)-03

9.

74

GROUP - C

Answer any two questions.

 2×10

- a) Let A and B be two subspaces of a real vector space V. Show that the set
 S = { a + b : a ∈ A, b ∈ B } is a subspace of V. Let W be a subspace of V that A, B ⊆ W. Show that S ⊆ W.
 - b) Let $W = \{ (x, y, z) \in \mathbb{R}^3 : x y + 2z = 0 \}$. Show that W is a subspace of Find a basis of W.
- 10. a) Let A be a $m \times p$ matrix and B be a $p \times n$ matrix over IR. Show that $AB \le min \{ rank A, rank B \}.$

b) Find for what values of a and b, the following system of equations has (solution, (ii) unique solution, (iii) infinite number of solutions :

x + y + z = 6 x + 2y + 3z = 10x + 2y + az = b

- 11. a) Let λ be a characteristic value of a real skew symmetric square matrix order *n*. Show that either $\lambda = 0$ or λ is purely imaginary.
 - b) State and prove Cayley-Hamilton theorem for a square matrix.
- 12. a) Let V be a Euclidean space. Prove that for any

 $\alpha, \beta \in V, ||\alpha + \beta|| \leq ||\alpha|| + ||\beta||.$

b) Define an orthogonal set of vectors in a Euclidean space. Show that orthogonal set of non-null vectors in a Euclidean space is linearly independent

c) Apply Gram-Schmidt orthonormalization process to the set of vectors

{ (1, 0, 1), (1, 0, -1), (1, 3, 4) } to obtain an orthonormal basis of \mathbb{R}^3 with standard inner product.

GROUP - D

75

2.5			14 2 4 1 1 Participation of the star star star star star start start start	
10 = 20			Answer any <i>two</i> questions. $2 \times 10 =$	20
	13.	a)	What do you understand by the symbols $\lim_{n \to \infty} x_n$ and $\lim_{n \to \infty} x_n$ where $\{x_n\}$	s a
V such 3 + 2			sequence of real numbers ? Show that $\{x_n\}$ converges iff these two limits	are
of IR ³ .			both finite and equal. 2	+ 4
2 + 3		b)	Prove that if a sequence $\{x_n\}$ converges to l , then every subsequence of $\{x_n\}$	<pre>{n}</pre>
hat rank 5			also converges to l.	4
as (i) no	14.	a)	State Cauchy's condensation test for convergence or divergence of a serie	s of
5			positive terms. Show that	
			$\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p} \text{ converges if } p > 1 \text{ and diverges if } p \le 1.$	6
		b)	Show that the function $\cos \frac{1}{x}$ defined in $0 < x < 1$ is not uniformly continu	ious
rix A of 5			there.	4
5	15.	a)	State and prove the Inermediate Value Theorem for a function continuous	in a
3			closed interval.	D
that an		b)	A function $f: [a, b] \rightarrow R$ is differentiable on $[a, b]$ such that the de	rived
ndent.			function $f': [a, b] \to R$ is a continuous function. Prove that \exists a point $f': [a, b] \to R$ is a continuous function.	sitive
1+2			constant k such that for any pair of points $x_1 + x_2 = 1 + x_2 = 1$	· 3
R ³ with				
4		c)	Prove that an absolutely convergent series is convergent.	2

MTMA (HN)-03

16. a) Prove that inequality
$$0 < \frac{1}{\log(1+x)} - \frac{1}{x} < 1$$
 (x > 0).

b) If $y = (x^2 - 1)^n$, prove that

$$(1-x^2)y_{n+2} - 2xy_{n+1} + n(n+1)y_n = 0.$$

Deduce that $u = \frac{d^n}{dx^n} (x^2 - 1)^n$ is a solution of the differential equation

$$\left(1-x^{2}\right)\frac{d^{2}u}{dx^{2}}-2x\frac{du}{dx}+n(n+1)u=0.$$

c) Evaluate
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$$
.

GROUP - E

Answer any five questions. $5 \times 5 = 3$

17. Let $S = \{(x, y) \in \mathbb{R}^2 : x, y \in Q\}$. Show that S is neither open nor closed in \mathbb{R}^2 .

2 +

18. Define
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} ; x^2 + y^2 \neq 0\\ 0 ; x^2 + y^2 = 0 \end{cases}$$

Show that f(x, 0) is continuous at x = 0 and f(0, y) is continuous at y = 0 by f(x, y) is not continuous at (0, 0).

19. Define
$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}; (x, y) \neq (0, 0) \\ 0; (x, y) = (0, 0) \end{cases}$$

Show that f is not differentiable at (0, 0) though f is continuous at (0, 0). 3 +

76

20. Let
$$f(x, y) = \begin{cases} (x^2 + y^2) \log (x^2 + y^2) : (x, y) \neq (0, 0) \\ 0 : (x, y) = (0, 0) \end{cases}$$

3

4

3

5 = 25

2 + 3

= 0 but

1 + 1 + 3

3 + 2

R².

ion

Show that f does not satisfy all the conditions of Schwarz' theorem but

- $f_{xy}(0,0) = f_{yx}(0,0).$ 3+2
- 21. If $u(x, y) = \varphi(xy) + \sqrt{xy} \psi\left(\frac{y}{x}\right)$, $x \neq 0$, $y \neq 0$ where φ and ψ are twice differentiable functions, prove that $x^2 \frac{\partial^2 u}{\partial x^2} y^2 \frac{\partial^2 u}{\partial y^2} = 0$.
- 22. Transform the equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$ by introducing new independent variables u = x, $v = \frac{1}{y} \frac{1}{x}$ and the new function $w = \frac{1}{z} + \frac{1}{x}$.
- 23. If H(x, y) be a homogeneous function of x and y of degree n having continuous first order partial derivatives and $u = (x^2 + y^2)^{-\frac{n}{2}}$, show that

 $\frac{\partial}{\partial x}\left(H\frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(H\frac{\partial u}{\partial y}\right)=0.$

24. Justify the existence and uniqueness of the implicit function y = y(x) for the functional equation $2xy - \log(xy) = 2e - 1$ near the point (1, e). Also find

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{(1,e)}$$

25. Show that the functions $u = \frac{x}{y-z}$, $v = \frac{y}{z-x}$ and $w = \frac{z}{x-y}$ are dependent and find the relation between them. 2+3

77

GROUP - F

78

Answer any two questions.

 $2 \times 5 =$

- 26. Find the area of the portion of the circle $x^2 + y^2 = 1$ which lies inside the parabo $y^2 = 1 - x$.
- 27. Show that the volume of the solid obtained by revolving the cardioid $r = a (1 + \cos \theta)$ about the initial line is $\frac{8}{3}\pi a^3$.
- 28. Find the centroid of the area in the first quadrant bounded by $y = x^2$ and $y = x^3$.
- 29. Prove that the moment of inertia of a solid right circular cone of height h and sen vertical angle α about its axis is $\frac{3}{10}$ mh² tan² α .