B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 PART-I
 MATHEMATICS - (HONOURS)
 Paper- II

Duration: 4 Hours Full Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A

(Marks:25)
Answer any five questions :
$5 \times 5=25$

1. a) State the supremum property of R. Show that the supremum property is not satisfied by the set Q of rational numbers.
b) State the density property of R.
2. a) Define interior point of a subset S of R. State with reasons whether a is an interior point of $S=[a, b]$ or not.
b) Prove that if $S \subset R$, then int (S) is the largest open set contained in S.
3. a) Define isolated point of $S \subset R$. Find the isolated points of the set Q of rational numbers.
b) If $A, B \subset R$ then prove that $d(A \cap B) \subset d(A) \cap d(B)$ where $d(A)$ denotes derived set of A. Give an example to show that. $d(A \cap B) \neq d(A) \cap d(B)$
4. a) Prove that a convergent sequence is bounded.
b) Is a bounded sequence always convergent ? Give reasons in support of your answer.
c) Prove that the sequence $\left\{x_{n}\right\}$ where $x_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$ is bounded above.

Test whether it is convergent or not.
5. a) If ${ }_{n \rightarrow \infty}^{L t} u_{n}=l$ then prove that $\operatorname{lt}_{n \rightarrow \infty}^{L t} \frac{u_{1}+u_{2}+\ldots+u_{n}}{n}=l$.
b) Using this, prove that if ${ }_{n \rightarrow \infty}^{L t} u_{n}=l$ where $u_{n}>0$ for all $n \in N$ and $l \neq 0$ $\underset{n \rightarrow \infty}{L t} \sqrt[n]{u_{1} \cdot u_{2} \cdots u_{n}}=l$
6. a) Prove that a convergent sequence is a Cauchy sequence.
b) Use Cauchy's general principle of convergence to prove that the sequence where $u_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, is not convergent.
c) Prove that the sequence $\left\{\frac{1}{n}\right\}$ is a Cauchy sequence.
7. a) Prove that the union of an enumerable number of enumerable set enumerable.
b) Use it to prove that the $\operatorname{set} Q$ of rational numbers is enumerable.
 - not exceeding x. Which kind of discontinuity is there at $x=0$?
b) Prove that ${ }_{x \rightarrow 0}^{L t} x^{2} \cos \frac{1}{x^{2}}=0$ but $\underset{x \rightarrow 0}{L t} \cos \frac{1}{x}$ does not exist.
9. a) When is a real valued function f of x, defined on $[a, b]$ said to be piececontinuous ? Is the function $f(x)=x+[x]$ piece-wise continuous in $\mid 0$, , If so, find the intervals of continuity of $f .([x]$ has its usual meaning.) 1
b) Give an example of a function which is nowhere continuous. Give reasor support of your answer.

GROUP-B

(Marks : 20)
10. Answer any two questions:
$1+1$
a) If $I_{m, n}=\int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x \mathrm{~d} x$, then prove that
$I_{m, n}=\frac{n-1}{m+n} I_{m, n-2}, m, n$ being positive integer. Hence or otherwise show that $I_{m, n}=\frac{1 \cdot 3 \cdot 5 \cdot \cdots(m-1) \cdot 1 \cdot 3 \cdot 5 \cdots(n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots(m+n)} \frac{\pi}{2}$, when both m and n are positive integers.
b) Show that $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} \mathrm{~d} x(m>0, n>0)$.
c) Prove that $\Gamma(m) \Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2 m-1}} \Gamma(2 m), m$ being an integer.
11. Answer any three questions :
a) Show that the pedal of the curve $x^{m} y^{n}=a^{m+n}$ with respect to origin is

$$
\begin{equation*}
r^{m+n}=a^{m+n} \frac{(m+n)^{m+n}}{m^{m} n^{n}} \cos ^{m} \theta \sin ^{n} \theta \tag{4}
\end{equation*}
$$

b) Find the asymptotes of

$$
\begin{equation*}
x^{2}\left(x^{2}-y^{2}\right)(x-y)+2 x^{3}(x-y)-4 y^{3}=0 \tag{4}
\end{equation*}
$$

c) If $x \cos \alpha+y \sin \alpha=p$ touches the curve

$$
\frac{x^{m}}{a^{m}}+\frac{y^{m}}{b^{m}}=1
$$

then show that $(a \cos \alpha)^{\frac{m}{m-1}}+(b \sin \alpha)^{\frac{m}{m-1}}=p^{\frac{m}{m-1}}$.
d) If ρ_{1} and ρ_{2} be the radii of curvature at the ends of conjugate diamete ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then , prove that

$$
\rho_{1} \frac{2}{3}+\rho_{2} \frac{2}{3}=\frac{a^{2}+b^{2}}{(a b)^{\frac{2}{3}}}
$$

e) Determine the point of inflexion of curve
$y^{2}=x(x+1)^{2}$.
f) Find the evolute of the curve
$x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.

GROUP - C

(Marks : 30)

Answer any three questions :

12. a) Find the integrating factor and then solve :

$$
y\left(x y+2 x^{2} y^{2}\right) \mathrm{d} x+x\left(x y-x^{2} y^{2}\right) \mathrm{d} y=0
$$

b) Solve by reducing to a linear equation :

$$
\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}-4 x^{2} \cos ^{2} y+x \sin 2 y=0
$$

c) Find the orthogonal trajectories of the cardioides $r=a(1-\cos \theta)$.
13. a) Transform the given equation to Clairaut's equation by putting
$x^{2}=u, y^{2}=v$ and hence find the general and singular solution: $x^{2}(y-p x)=p^{2} y$, where $p=\frac{d y}{d x}$.
b) Solve : $\left(x^{2} \mathrm{D}^{2}-3 x \mathrm{D}+5\right) y=x^{2} \sin (\log x)$ where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} x}$.
is of the
17. a) Show that $x \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}-y=x^{2}$, by the method of operational factors.
b) Solve : $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \cdot \frac{d y}{d x}+y=4 \cos \log (1+x)$ by changing the independent variable.

GROUP - D

(Marks : 25)
Answer any five questions.
18. If $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \times \vec{b} \times \vec{c}=\frac{1}{2} \vec{b}$, find the angles which \vec{a} makes with \vec{b} and $\vec{c} ; \quad \vec{b}, \vec{c}$ being non-parallel.
19. a) A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+5$, where t den time. Find the component of velocity and acceleration at time $t=1$ in direction $\vec{i}+\vec{j}+3 \vec{k}$.
b) If $\quad \frac{\mathrm{d}}{\mathrm{d} t} \vec{a}=\vec{c} \times \vec{a}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \vec{b}=\vec{c} \times \vec{b}$, then show $\frac{\mathrm{d}}{\mathrm{d} t}(\vec{a} \times \vec{b})=\vec{c} \times(\vec{a} \times \vec{b})$.
20. a) Prove by vector method, the trigonometrical formula $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
b) Show that $[\vec{\alpha}+\vec{\beta}, \vec{\beta}+\vec{\gamma}, \vec{\gamma}+\vec{\alpha}]=2[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]$. when 1 denotes the sce triple product.
21. For any two vectors \vec{a} and \vec{b}, prove that $\operatorname{grad}(\vec{a} \cdot \vec{b})=\vec{a} \times \operatorname{curl} \vec{b}+\vec{b} \times \operatorname{curl} \vec{a}+(\vec{a} \cdot \nabla) \vec{b}+(\vec{b} \cdot \nabla) \vec{a}$
22. a) Find the constants a, b, c so that

$$
\vec{f}=(x+2 y+a z) \vec{t}+(b x-3 y-z) \vec{j}+(4 x+c y+2 z) \vec{k} \text { is irrotational. }
$$

b) If the vector $\vec{f}=3 x \vec{i}+(x+y) \vec{j}-a x \vec{k}$ is solenoidal, find a.
23. a) A particle acted on by the constant forces $4 \vec{i}+\vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j}-\vec{k}$, displaced from the point $\vec{i}+2 \vec{j}+3 \vec{k}$ to the point $5 \vec{i}+4 \vec{j}+\vec{k}$. Find the wo done by the force on the particle.
b) Find the vector equation of the plane passing through the origin and parallel the vectors $2 \vec{i}+3 \vec{j}+4 \vec{k}$ and $4 \vec{i}-5 \vec{j}+\vec{k}$.
(i) $\operatorname{curl}(\phi \vec{A})$
(ii) curl curl \vec{A}. $3+2$
25. Show that the necessary and sufficient condition that a non-zero vector always remains parallel to a fixed line is that $\vec{u} \times \frac{\mathrm{d} \vec{u}}{\mathrm{~d} t}=\overrightarrow{0}$.
26. If $\vec{A}=2 x z^{2} \vec{i}-y z \vec{j}+3 x z^{3} \vec{k}, \phi=x^{2} y z$, then find,

