West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 (5 = 15)PART-I given by **MATHEMATICS** - (HONOURS) 5 Paper-II and is 5 Duration : 4 Hours Full Marks : 100 Candidates are required to give their answers in their own words as far as practicable. 5 and The figures in the margin indicate full marks. **GROUP** – A -5 and (Marks: 25) $5 \times 5 = 25$ Answer any five questions : 3 + 21. a) State the supremum property of R. Show that the supremum property is not satisfied by the set Q of rational numbers. line 1 + 3 + 1b) State the density property of *R*. Define interior point of a subset S of R. State with reasons whether a is an 2. a) lines interior point of $S = \begin{bmatrix} a, b \end{bmatrix}$ or not. 1 + 1b) Prove that if $S \subset R$, then int (S) is the largest open set contained in S. 3 Define isolated point of $S \subset R$. Find the isolated points of the set Q of rational 3. a) numbers. 1 + 1If A, $B \subseteq R$ then prove that $d(A \cap B) \subseteq d(A) \cap d(B)$ where d(A) denotes b) 3 + 2derived set of A. Give an example to show that. $d(A \cap B) \neq d(A) \cap d(B)$ 4z - 11 + 2Prove that a convergent sequence is bounded. 2 4. a) 5 b) Is a bounded sequence always convergent ? Give reasons in support of your 1 answer. F-149

65

MTMA (HN)-02

MIMA (HN)-02		66
	c)	Prove that the sequence $\{x_n\}$ where
	1912 	$x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ is bounded above.
		Test whether it is convergent or not.
5.	a)	If $\lim_{n \to \infty} u_n = l$ then prove that $\lim_{n \to \infty} \frac{u_1 + u_2 + \dots + u_n}{n} = l$.
	b)	Using this, prove that if $\lim_{n \to \infty} u_n = l$ where $u_n > 0$ for all $n \in N$ and $l \neq 0$ $\lim_{n \to \infty} n \sqrt{u_1 \cdot u_2 \cdots u_n} = l$
6.	a)	Prove that a convergent sequence is a Cauchy sequence.
	b)	Use Cauchy's general principle of convergence to prove that the sequence $\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	c)	Prove that the sequence $\left\{ \frac{1}{n} \right\}$ is a Cauchy sequence.
7.	a)	Prove that the union of an enumerable number of enumerable set enumerable.
	b)	Use it to prove that the set Q of rational numbers is enumerable.
8.	a)	Show that $Lt_{x\to 0}$ [x] does not exist where [x] represents the greatest int
	19336	not exceeding x. Which kind of discontinuity is there at $x = 0$?
	.b)	Prove that $\frac{Lt}{x \to 0} x^2 \cos \frac{1}{x^2} = 0$ but $\frac{Lt}{x \to 0} \cos \frac{1}{x}$ does not exist.
9.	a)	When is a real valued function f of x , defined on $[a, b]$ said to be piece-
	Mar St	continuous ? Is the function $f(x) = x + [x]$ piece-wise continuous in [0, 2
		If so, find the intervals of continuity of f . ([x] has its usual meaning.) 1
	b)	Give an example of a function which is nowhere continuous. Give reason support of your answer.

 $2 \times 4 = 8$

3 + 1

4

 $3 \times 4 = 12$

GROUP-B

67

(Marks : 20)

1 + 1

3

2

2

2

1

3

2

sets is

st integer

1 + 1

2 + 1

piece-wise

[0, 2]?

reason in

1+2

2

10.

IT

0 then

 $e \{u_n\}$

a) If $I_{m,n} = \int_{0}^{2} \sin^{m} x \cos^{n} x dx$, then prove that

 $I_{m,n} = \frac{n-1}{m+n} I_{m,n-2}, m, n \text{ being positive integer. Hence or otherwise show that}$ $I_{m,n} = \frac{1 \cdot 3 \cdot 5 \cdot \cdots (m-1) \cdot 1 \cdot 3 \cdot 5 \cdot \cdots (n-1) \pi}{2 \cdot 4 \cdot 6 \cdot \cdots (m+n)} \frac{\pi}{2}, \text{ when both } m \text{ and } n \text{ are}$

positive integers.

Answer any two questions :

) Show that
$$\beta(m, n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx \quad (m > 0, n > 0).$$
 4

c) Prove that
$$\Gamma(m) \Gamma\left(m + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}} \Gamma(2m)$$
, *m* being an integer.

11. Answer any three questions :

a) Show that the pedal of the curve $x^m y^n = a^{m+n}$ with respect to origin is $r^{m+n} = a^{m+n} \frac{(m+n)^{m+n}}{m^m n^n} \cos^m \theta \sin^n \theta.$ 4

b) Find the asymptotes of

$$x^{2}(x^{2} - y^{2})(x - y) + 2x^{3}(x - y) - 4y^{3} = 0.$$

c)

b

If $x \cos \alpha + y \sin \alpha = p$ touches the curve

$$\frac{x^m}{a^m} + \frac{y^m}{b^m} = 1,$$

then show that $(a\cos\alpha)^{\overline{m-1}} + (b\sin\alpha)^{\overline{m-1}} = p^{\overline{m-1}}$.

4

4

MTMA (HN)-02

f)

d) If ρ₁ and ρ₂ be the radii of curvature at the ends of conjugate diameter ellipse x²/a² + y²/b² = 1, then ,prove that ρ₁²/3 + ρ₂²/3 = a² + b²/2/(ab)³
e) Determine the point of inflexion of curve

$$y^2 = x(x+1)^2$$

Find the evolute of the curve

 $x = a(\theta - \sin \theta), \ y = a(1 - \cos \theta).$

GROUP - C

(Marks : 30)

Answer any three questions :

a) Find the integrating factor and then solve :

$$y(xy + 2x^2y^2) dx + x(xy - x^2y^2) dy = 0.$$

b) Solve by reducing to a linear equation :

$$(1+x^2) \frac{dy}{dx} - 4x^2 \cos^2 y + x \sin 2y = 0.$$

Find the orthogonal trajectories of the cardioides $r = a (1 - \cos \theta)$.

13. a)

c)

b)

12.

Transform the given equation to Clairaut's equation by putting

 $x^2 = u, y^2 = v$ and hence find the general and singular solution :

$$x^2(y-px) = p^2y$$
, where $p = \frac{dy}{dx}$.

Solve : $(x^2D^2 - 3xD + 5)y = x^2 \sin(\log x)$ where $D = \frac{d}{dx}$.

68

3 >

MTMA (HN)-02

5

rs of the

4

4

4

14.

15.

16.

a) By the method of undetermined coefficient find the solution of the equation $(D^2 - 4D + 4)y = x^3e^{2x} + xe^{2x}.$ 5

b) Solve by the method of variation of parameters : $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}$. 5

a) Solve:
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos(\log(1+x)).$$

b) Show that $\sin x \frac{d^2 y}{dx^2} - \cos x \frac{dy}{dx} + 2y \sin x = 0$ is exact and solve it completely. 5

a) Solve $x \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + 2y = x^3 e^x$ after the determination of a solution of its reduced equation. 5

b) Reduce to normal form and hence solve :

$$x^{2} \frac{d^{2}y}{dx^{2}} - 2(x^{2} + x)\frac{dy}{dx} + (x^{2} + 2x + 2)y = 0.$$
 5

10 = 30

3

4

3

17. a) Show that $x \frac{d^2 y}{dx^2} + (x - 1) \frac{dy}{dx} - y = x^2$, by the method of operational factors. 5

b) Solve : $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \cdot \frac{dy}{dx} + y = 4\cos \log (1+x)$ by changing the independent variable. 5

GROUP - D

(Marks : 25)

Answer any five questions.

 $5 \times 5 = 25$

1+2+2 18. If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times \vec{b} \times \vec{c} = \frac{1}{2} \vec{b}$, find the angles which \vec{a} 5 makes with \vec{b} and \vec{c} ; \vec{b} , \vec{c} being non-parallel. 5

MTMA (HN)-02

19. a) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t denotes time. Find the component of velocity and acceleration at time t = 1 in direction $\vec{i} + \vec{j} + 3\vec{k}$.

b) If
$$\frac{d}{dt}\overrightarrow{a} = \overrightarrow{c} \times \overrightarrow{a}$$
, $\frac{d}{dt}\overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$, then show the $\frac{d}{dt}(\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b})$.

20. a) Prove by vector method, the trigonometrical formula $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$.

b) Show that $\begin{bmatrix} \vec{\alpha} + \vec{\beta}, \vec{\beta} + \vec{\gamma}, \vec{\gamma} + \vec{\alpha} \end{bmatrix} = 2 \begin{bmatrix} \vec{\alpha}, \vec{\beta}, \vec{\gamma} \end{bmatrix}$ when [] denotes the scattering product.

21. For any two vectors a and b, prove that

grad $(a \cdot b) = a \times \text{curl } b + b \times \text{curl } a + (a \cdot \nabla) b + (b \cdot \nabla) a$

22. a) Find the constants a, b, c so that

 $\vec{f} = (x + 2y + az)$ $\vec{t} + (bx - 3y - z)$ $\vec{j} + (4x + cy + 2z)$ \vec{k} is irrotational.

3

b) If the vector $\vec{f} = 3x \ \vec{i} + (x + y) \ \vec{j} - ax \ \vec{k}$ is solenoidal, find a.

23. a) A particle acted on by the constant forces 4i + j - 3k and 3i + j - k, displaced from the point $\vec{i} + 2\vec{j} + 3\vec{k}$ to the point $5\vec{i} + 4\vec{j} + \vec{k}$. Find the we done by the force on the particle.

b) Find the vector equation of the plane passing through the origin and parallel the vectors $2\vec{i} + 3\vec{j} + 4\vec{k}$ and $4\vec{i} - 5\vec{j} + \vec{k}$.

71

lenotes

- in the
- 24. a) If α , β , γ be three vectors such that $\alpha + \beta + \gamma = 0$ and $|\alpha| = 2$, $|\vec{\beta}| = 4$, $|\vec{\gamma}| = 6$, then show that $\vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} + \vec{\gamma} \cdot \vec{\alpha} = -28$.

that

3 + 2

- Find the directional derivative of the function $\phi = x^2 y^2 + 2z^2$ as P(1, 2, 3) in b) the direction of the line PQ, where Q is (5, 0, 4). 3 + 2
- Show that the necessary and sufficient condition that a non-zero vector 25. always remains parallel to a fixed line is that $\vec{u} \times \frac{du}{dt} = \vec{0}$. 5
- e scalar

3 + 2

5

26.

 $\operatorname{curl}(\phi A)$ (i)

If $\vec{A} = 2xz^2 \vec{i} - yz \vec{j} + 3xz^3 \vec{k}$, $\phi = x^2yz$, then find,

curl curl A. (ii)

3 + 2

u

3 + 2i-k, is

the work

arallel to

3 + 2