West Bengal State University B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014 PART - II

MATHEMATICS - GENERAL
 Paper - II

Duration: 3 Hours]
[Full Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

GROUP - A

বিভাগ - ক
(Full Marks : 25)
(পূর্ণমান : ২৫)
Answer Question No. 1 and any two from the rest.
১ নং প্রশ্ন ও অন্য যে কোন দুটি প্রশ্নের উত্তর দিন।

1. a) If A, B, C be three non-empty sets such that $A \cap B=A \cap C$ and
$A \cup B=A \cup C$, then prove that $B=C$.
यमि A, B, C তिनটি অশৃना मেট হয়, याতে $A \cap B=A \cap C$ এবং $A \cup B=A \cup C$ হয়, তাহলে প্রমাণ করুন যে $B=C$.
b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions such that $f \circ g=g \circ f$. Does it necessarily imply that $f=g$? Justify your answer, where \mathbb{R} is the set of real numbers.
$f: \mathbb{R} \rightarrow \mathbb{R}$ ও $g: \mathbb{R} \rightarrow \mathbb{R}$ দুটি অপেক্ষক $f \circ g=g \circ f$ সम্পর্কে আবদ্ধ। এর থেকে কি বলা সম্তব $f=g$? আপনার উত্তরের সপক্ষে যুক্তি দিন । যেখানে \mathbb{R} হল বাস্তব সংখ্যার সেট।
c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be two functions given by $f(x)=|x|+x$, $x \in \mathbb{R}$ and $g(x)=|x|-x, x \in \mathbb{R}$. Find $f \circ g$ and $g \circ f$ where \mathbb{R} is the set of real numbers.

ধরা যাক $f: \mathbb{R} \rightarrow \mathbb{R}$ ও $g: \mathbb{R} \rightarrow \mathbb{R}$ অপেক্ষক দুটি যथাক্রমে নিম্নরূপে সংষ্ঞায়িত :
$f(x)=|x|+x, x \in \mathbb{R}$ ও $g(x)=|x|-x, x \in \mathbb{R}$.
এখন $f \circ g$ ও $g \circ f$ নির্ণয় করুন যেখান্ন \mathbb{R} হন সমস্ত বাস্তব সংখ্যার সেট।
3. a) Prove that the set of all solutions of the equation $x^{n}=1$, where n is a positive integer, form an Abelian group under usual multiplication.

প্রমাণ করুন যে স্বাভাবিক গুণের সাপেক্ষে $x^{n}=1$, সমীকরণের বীজগুলির সেট একটিট আবেলিয়ান দল গঠন করে, ভেখানে n একটি ধনাত্মক পৃর্ণসংখ্যা ।
b) Justify whether the following statements are True or False:

নিম্নলিখিত বিবৃতিগুলি ঠিক না ভুল যাচাই করুন :
i) (\mathbb{R}, \bullet) is an abelian group, where \mathbb{R} is the set of all real numbers.
(\mathbb{R}, \bullet) একটি আবেলিয়ান দল, যেখান \mathbb{R}, সমস্ত বাস্তব সংখ্যার সেট ।
ii) Union of two subgroups of group ($G, *$) is a subgroup of $(G, *)$.

দল ($G, *$)-এর দুটি উপদলের ইউ়নিয়ন, ($G, *$)-এর একটি উপদল।
iii) If $(H, *)$ and $(K, *)$ are two subgroups of $(G, *)$, then $H \cap K \# \phi$.

यमि ($G, *$) দলের দুটি উপদল ($H, *)$ उ ($K, *)$ হয়, তাহলে $H \cap K \# \phi$.

If in a ring $(B,+\cdot), a^{2}=a \forall a \in B$, show that $2 a=a+a=0 \forall a \in B$ and also B is a commutative ring. Give an example to show that the converse is not true. $2+2+2$

यमि $(B,+\bullet)$, মণ্ডলের যে কোন সদস্য a-এর জন্য $a^{2}=a$ रয়, তবে প্রমাণ করুন যে
$2 a=a+a=0$, যে কোন সদস্য $a \in B$-এর জন্য । আরও প্রমাণ করুन যে B একটি বিनिময়যোগ্য মণ্ডল । একটি উদাহরণের সাহায্যে দেখান $2 a=a+a=0, a \in B$ रলে $a^{2}=a, a \in B$ नाও হতে পারে।

Show that $(S,+, \bullet)$ is a subring of $\left(M_{2}(\mathbb{R}),+, \bullet\right)$,
where $S=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in I R\right\}, M_{2}(\mathbb{R})$ is the set of all real 2×2 matrices and \mathbb{R} is the set of all real numbers.

দৌখান যে $(S,+, \bullet)$ হল ($\left.M_{2}(I R),+, \bullet\right)$ মণ্ডলের একট় উপমণ্ডল।
যেথানে, $S=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in I R\right\}, M_{2}(\mathbb{R})$ সমস্ত 2×2 বাস্তব সংच্যার সারি (ম্যাট্রিক্স)

এবং \mathbb{R} रল সমস্ত বাস্তব সংখ্যার সেট ।
iii) If $(H, *)$ and $(K, *)$ are two subgroups of $(G, *)$, then $H \cap K \# \phi$.

यদি ($G, *$) দলের দুটি উপদল ($H, *$) ও $(K, *)$ হয়, তাহলে $H \cap K \# \phi$.

$$
2+2+1
$$

If in a ring $(B,+\bullet), a^{2}=a \forall a \in B$, show that $2 a=a+a=0 \forall a \in B$ and also B is a commutative ring. Give an example to show that the converse is not true. $2+2+2$

यदि $(B,+, \bullet)$, মণ্ডলের যে কোন সদস্য a-এর জন্য $a^{2}=a$ হয়, তবে প্রমাণ করুন যে
$2 a=a+a=0$, যে কোন সদস্য $a \in B$-এর জন্য । আরও প্রমাণ করুন যে B একটি বিनिময়যোগ্য মণ্ডল । একটি উদাহরণের সাহায্যে দেখান $2 a=a+a=0, a \in B$ रলে $a^{2}=a, a \in B$ नाও रতে পারে।

Show that $(S,+, \bullet)$ is a subring of $\left(M_{2}(\mathbb{R}),+, \bullet\right)$,
where $S=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in \mathbb{R}\right\}, M_{2}(\mathbb{R})$ is the set of all real 2×2 matrices and \mathbb{R} is the set of all real numbers.

দেঈান যে $(S,+, \bullet)$ रল $\left(M_{2}(\mathbb{R}),+, \bullet\right)$ মগ্ডলের একট় উপমণ্ডল।
যেখানে, $S=\left\{\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right): x \in I R\right\}, M_{2}(\mathbb{R})$ সমস্ত 2×2 বাস্তব সংच্যার সারি (ম্যাট্রিक)
এবং \mathbb{R} হল সমস্ত বাস্তব সংখ্যার সেট ।
5. a) Reduce the real quadratic form $5 x^{2}+y^{2}+10 z^{2}-4 y z-10 z x=0$ to the normal form and show that it is positive definite.
$5 x^{2}+y^{2}+10 z^{2}-4 y z-10 z x=0$ বাস্তব দ্বিঘাত রূপকে সাধারণ (normal) আকারে প্রকাশ করুন এবং দেখান যে এটি একটি ধনাত্মক সুনির্ণীত হবে ।
b) Find the dimension of the subspace S of \mathbb{R}^{3} defined by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+y-z=0\right\}
$$

বাস্তব ভেক্টর দেশ \mathbb{R}^{3}-এর $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+y-z=0\right\}$ উপলেশের মাত্রা নির্ণয় করুন।
c) Find eigenvalues of the matrix $A=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1\end{array}\right)$.
$A=\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1\end{array}\right)$ সারির (matrix) आইগেন-মানগুলি নির্ণয় করুন।

GROUP - B

বिভाগ - च
(Full Marks : 20)

(পূর্ণমান : ২০)

Answer Question No. 6 and any two from the rest. ৬ নং প্রশ্ন ও অন্য যে কোন দুটি প্রশ্নের উত্তর দিন।
6. Answer any two questions :

যে কোন দুটি প্রশ্নের উত্তর দিন :
a) Find the equation of the straight line passing through the point ($1,2,3$) and parallel to the line $\frac{x}{2}=\frac{y}{4}=\frac{z}{3}$.

এমন একটি সরলরেখা নির্ণয় করুন या $(1,2,3)$ বিन्দूগামী এবং $\frac{x}{2}=\frac{y}{4}=\frac{z}{3}$ রেখার সমান্তরাল।
b) Find the direction cosines of the line that makes equal angles with the Cartesian axes.

যখন একটি সরলরেখা কার্তেসীয় অক্ষের সঙ্গে সমান কোণ উৎপন্ন করে, তখন ঐ রেখার কোসাইন দিগন্তগুলির মান নির্ণয় করুন।
c) Find the equation of the sphere which has $(3,4,-1)$ and $(-4,2,3)$ as the end points of a diameter. Find also the co-ordinate of its centre.

কোন গোলকের একটি ব্যাসের প্রান্তবিন্দুদ্বয়ের স্থানাঙ্ক (3, 4, - 1) এবং $(-4,2,3)$ হলে গোলকটির সমীকরণ এবং সেটির কেন্দ্রের স্থানাঙ্ক নির্ণয় করুন।
7. a) Show that the straight lines whose direction cosines are given by the equations $2 l+2 m-n=0$ and $m n+n l+l m=0$ are at right angle.

यमि দूটি সরলরেথার কোসাইন দিগন্তগুলি $2 l+2 m-n=0$ এবং $m n+n l+l m=0$ সমীকরণদ্বারা সৃচিত হয় তরে দেখান বে সরলরেখা দুটি পরস্পর লম্ব ।
b) Perpendiculars $P L, P M, P N$ are drawn from the point $P(a, b, c)$ to the co-ordinate planes. Show that the equation of the plane $L M N$ is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$.
$P(a, b, c)$ বিন্দু থেকে $x=0, y=0, z=0$ সমতল ত্নিটির উপর $P L, P M, P N$ ত্নিটি লম্ব अক্কিত হয়। লেখান বে, $L M N$ সমতलের সমীকরণ $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$.
8. a) Prove that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} ; \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ intersect. Find their point of intersection and the equation of the plane in which they lie.

প্রমাণ করুন বে $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} ; \frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ সরলরেथा দूটि পরম্পরকে ছেদ করে। তাদর ছেদবিন্দুর স্হানাঙ্ক নির্ণয় করুন এবং যে সমতলে সরলরেখা দুটি থাকবে তার সমীকরণ নিণ্ণয় করুন্ন।
b) Find the magnitude of the shortest distance between the lines

$$
\begin{aligned}
& \frac{x}{4}=\frac{y+1}{3}=\frac{z-2}{2} \text { and } 5 x-2 y-3 z+6=0=x-3 y+2 z-3 \\
& \frac{x}{4}=\frac{y+1}{3}=\frac{z-2}{2} \text { बবং } 5 x-2 y-3 z+6=0=x-3 y+2 z-3 \text { সরলরেখাদ্বে়ের }
\end{aligned}
$$

মধ্যে নৃানতম দূরত্ব নির্ণয় করুন।
9. a) Find the equation of the sphere of which the circle $x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+5=0, x-2 y+3 z+1=0$ is a great circle যে গোলকটির ক্ষেত্রে $x^{2}+y^{2}+z^{2}+2 x-4 y+2 z+5=0, \quad x-2 y+3 z+1=0$ বৃত্তটি একটি গুরুবৃত্ত তার সমীকরণ নির্ণয় করুন।
b) Find the distance of the point $(3,2,1)$ from the line $\frac{x-1}{3}=\frac{y}{4}=\frac{z-2}{1}$. $\frac{x-1}{3}=\frac{y}{4}=\frac{z-2}{1}$ সরলরেখা থেকে $(3,2,1)$ বিन्দুটির দূরত্ব নির্ণয় করুন।
10. a) Show that the plane $2 x+y-z=12$ touches the sphere $x^{2}+y^{2}+z^{2}=24$ and find the co-ordinates of the point of contact.

দেখান যে, $2 x+y-z=12$ সমতলটি $x^{2}+y^{2}+z^{2}=24$ গোলকটিকে স্পর্শ করে। ঐ স্পর্শবিন্দুর স্থানাঙ্ক নির্ণয় করুন।
b) Find the equation of the right circular cone whose vertex is the origin and axis is the line $\frac{x}{2}=\frac{y}{1}=\frac{z}{2}$ and semi-vertical angle is 45°.

যে লম্ব বৃত্তাকার শঙ্কুর শীর্ষ মূলবিন্দুচে, অক্ষের সমীকরণ $\frac{x}{2}=\frac{y}{1}=\frac{z}{2}$ এবং অর্ধ-শীর্ষকোণ 45°, সেই শঙ্কুর সমীকরণ নির্ণয় করুন।

GROUP - C

বিভাগ - গ
(Full Marks : 25)
(পूर्ণমানः २৫)
Answer Question No. 11 and any two from the rest.

> ১১ নং প্রশ্ন ও অন্য যে কোন দুটি প্রশ্নের উত্তর দিন।
11. a) Answer any one question :

যে কোন একটি প্রশ্নের উত্তর দিন :
i) Check whether Rolle's theorem is applicable to the function
$f(x)=|x|, x \in[-1,1]$
$f(x)=|x|$ অপেক্ষকটির উপর $[-1,1]$ অন্তরালে Rolle-এর উপপাদ্যটি প্রযোজ্য হবে কিনা যাচাই করুন।
ii) Examine whether the sequence $\left\{\frac{4 n+5}{n+2}\right\}_{n}$ is bounded.
$\left\{\frac{4 n+5}{n+2}\right\}_{n}$ अनুক্রমটি বদ্ধ কিনা পরীক্ষা করুন।
iii) If $f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2!} f^{\prime \prime}(\theta h), 0<\theta<1$, find θ when

$$
h=1 \text { and } f(x)=(1-x)^{5 / 2}
$$

यमि $f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2!} f^{\prime \prime}(\theta h), \quad 0<\theta<1$ इয়, उबে θ-बর
মান निर्ণয় করুন যখন $h=1$ এবং $f(x)=(1-x)^{5 / 2}$.
b) Answer any one question :

$$
1 \times 3=3
$$

যে কোন একটি প্রশ্নের উত্তর দিন :
i) Show that $\frac{x}{1+x}<\log (1+x)<x$, if $x>0$. দেथान यে, $\frac{x}{1+x}<\log (1+x)<x$, यथन $x>0$.
ii) Find the domain of definition of $f(x)$ where

$$
f(x)=\sqrt{\log _{e} \frac{5 x-x^{2}}{4}}
$$

$f(x)=\sqrt{\log _{e} \frac{5 x-x^{2}}{4}}$ হलে $f(x)$-এর সংब্ঞার क্সেত্র নির্ণয় করুन।
iii) Evaluate : $\underset{x \rightarrow \pi / 2}{L t}(\sin x)^{\tan x}$.
$\operatorname{lt}_{x \rightarrow \pi / 2}^{L t}(\sin x)^{\tan x}$-এর মাन निर्ণয় করুন।
12. a) By Raabe's Test prove that the series
$1+\frac{1}{2}+\frac{1.3}{2.4}+\frac{1.3 .5}{2.4 .6}+\ldots \ldots+\frac{1 \cdot 3 \cdot 5.7 \ldots \ldots(2 n-1)}{2 \cdot 4 \cdot 6.8 \ldots . .2 n}+\ldots \ldots \ldots$. is divergent.

র্যাবির পরীক্ষা প্রয়োগ করে প্রমাণ করুন যে $1+\frac{1}{2}+\frac{1.3}{2.4}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}+\ldots \ldots+\frac{1 \cdot 3 \cdot 5.7 \ldots \ldots(2 n-1)}{2 \cdot 4 \cdot 6.8 \ldots \ldots 2 n}+\ldots \ldots \ldots$. শ্রেণিটি অপসারী।
b) If $\quad x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in N$, where N stands for the set of natural numbers, prove that the sequence $\left\{x_{n}\right\}$ is bounded.

যদি $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in N$, যেখানে N একটি স্বাভাবিক সংখ্যার সেট সৃচিত করে, তবে
প্রমাণ করুন যে $\left\{x_{n}\right\}$ अনুক্র্মটি সীমাবদ্ধ ।
c) Prove that the sequence $\left\{x_{n}\right\}$ where $x_{n}=(-1)^{n}$ is not convergent.

প্রমাণ করুন যে $x_{n}=(-1)^{n}$ अনুক্রমটি অভিসারী নয়।
13. a) The function $f(x)$ is defined by

$$
\begin{aligned}
f(x) & =3+2 x \text { for }-\frac{3}{2}<x \leq 0 \\
& =3-2 x \text { for } 0<x \leq \frac{3}{2}
\end{aligned}
$$

Show that $f(x)$ is continuous but not differentiable at $x=0$.

একটি অপেক্ষক $f(x)$ নিम্नলিখিতরূপে সংब্बाয়িত

$$
\begin{aligned}
f(x) & =3+2 x \text { यथन }-\frac{3}{2}<x \leq 0 \\
& =3-2 x \text { घথन } 0<x \leq \frac{3}{2}
\end{aligned}
$$

প্রমাণ করুন বে $x=0$ বিन्দूতু অপেক্ষকটি সন্তত কিন্নু অন্তরকলনযোগ্য নয়।
b) Evaluate : $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$
$\operatorname{Lt}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$-এর মাन निर्ণয় করুन।
c) State and prove Lagrange's Mean Value theorem.

Lagrange-এর মধ্যমান উপপাদ্যটি বিবৃত করুন এবং প্রমাণ করুন।
14. a) Find the asymptotes of $x^{3}-2 y^{3}+x y(2 x-y)+y(x-y)+1=0$.
$x^{3}-2 y^{3}+x y(2 x-y)+y(x-y)+1=0$-এর রৈখিক স্পর্শপ্রবণরেখাগুলি নির্ণয় করুন।
b) Find the envelopes of the family of straight lines of
$y=m x+\sqrt{a^{2} m^{2}+b^{2}} ; m$ being parameter.
$y=m x+\sqrt{a^{2} m^{2}+b^{2}}$ দ্বারা সূচিত সরলরেখা-গোষ্ঠীর পরিস্পর্শক নির্ণয় করুন, যেথানে m একটি প্রচল।
c) Find the position and nature of the double point (if any) of the curve

$$
y^{2}-x(x-a)^{2}=0
$$

$y^{2}-x(x-a)^{2}=0$ বক্ররেখাটির কোণ দ্বি-বিन্দু থাকলে ঐ দ্বি-বিন্দুটির অবস্থান ও প্রকৃতি নির্ণয় করুন।
15. a) Show that the function $f(x, y)=y^{3}+3 x^{2} y+5 x^{4}$ has a minimum at (0,0).

দেখান যে, $f(x, y)=y^{3}+3 x^{2} y+5 x^{4}-এ র(0,0)$ বিन্দুতে অবম মান আছে।
b) If a function $f(x)$ is differentiable at the point $x=c$, show that it is continuous at that point. Is the converse true ? Justify your answer by giving an example.

यमि $f(x)$ অপেক্ষকটি $x=c$ বিन्দूতে অন্তরকলনযোগ্য হয়, তবে প্রমাণ করুন যে, ঐ বিন্দুতে অপেক্ষকটি সন্তত হবে । বিপরীত বিবৃতিটি কি সত্য ? উদাহরণসহ উত্তরের য়থার্থতা বোঝান।
c) Show that the rectangle inscribed in a circle has maximum area when it is a square.

দেখান যে, বৃত্তে অন্তর্লিখিত বৃহত্তম ক্ষেত্রফলবিশিষ্ট আয়তক্ষেত্রটি একটি বর্গক্ষেত্র।

GROUP - D

বিভাগ-ঘ

(Full Marks: 20)

(পূর্ণমান ः २०)

Answer Question No. 16 and any two from the rest.
১৬ নং প্রশ্ন ও অন্য যে কোন দুটি প্রশ্নের উত্তর দিন।
16. Answer any two questions :

যে কোন দুট়ি প্রশ্নের উত্তর দিন :
a) Examine the convergence of $\int_{0}^{\infty} e^{-x} \mathrm{~d} x$, if so, find the value.

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-x} \mathrm{~d} x \text { সমাকলটির অভিসারিত্ব পরীক্ষা করুন । যদি অভিসারী হয়, তাহলে সেটির মান নির্ণয় } \\
& \text { করুন। }
\end{aligned}
$$

b) Find, if possible, the value of $B\left(\frac{5}{2}, 6\right)$.

यদি সম্ভব হয় $B\left(\frac{5}{2}, 6\right)$-এর মান নির্ণয় করুন।
c) From the relation $\Gamma(n+1)=n \Gamma(n)$, calculate $\Gamma(6)$.
$\Gamma(n+1)=n \Gamma(n)$, সম্পর্ক থেকে $\Gamma(6)$-এর মান নির্ণয় করুন।
d) Prove that the area of the circle $x^{2}+y^{2}=a^{2}$ is πa^{2}

প্রমাণ করুন $x^{2}+y^{2}=a^{2}$ বৃত্তের ক্ষেত্রফল $=\pi a^{2}$
17. a) Evaluate, if possible $\int_{0}^{\pi / 2} \log \sin x d x$.

यদি সম্ভব হয়, তাহলে $\int_{0}^{\pi / 2} \log \sin x \mathrm{~d} x$-এর মান निর্ণয় করুन।
b) Find the value of $\int_{0}^{\infty} e^{-x^{2}} d x$.

$$
\int_{0}^{\infty} e^{-x^{2}} \mathrm{~d} x-এ র \text { মান নির্ণয় করুন। - }
$$

18. a) State the relation between Beta function and Gamma function and use it to show that $\int_{0}^{1} x^{3 / 2}(1-x)^{3 / 2} \mathrm{~d} x=\frac{3 \pi}{128}$.

বিটা অপেক্ষক ও গামা অপেক্ষকের মধ্যে সম্পর্ক লিখুন। এর সাহায্যে প্রমাণ করুন যে

$$
\int_{0}^{1} x^{3 / 2}(1-x)^{3 / 2} \mathrm{~d} x=\frac{3 \pi}{128}
$$

b) Determine $\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$, where R is the region bounded by $y=x^{2}$, $x=2, y=1$.

4
$\iint_{R}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$-এর মান निর্ণয় করুन, যেখানে R ক্ষেত্রটি হল
$y=x^{2}, x=2, y=1$ দ্বারা বদ্ধ।
19. a) Evaluate : $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r^{3} \sin \theta \cos \theta \mathrm{~d} r \mathrm{~d} \theta$.

মান निर्ণয় করুন : $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r^{3} \sin \theta \cos \theta \mathrm{~d} r \mathrm{~d} \theta$
b) Find the perimeter of the curve $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$.
$\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$ বক্রের পরিসীমা নির্ণয় করুন।
20. a) Find the volume of the solid produced by the revolution of the upper half of the loop of the curve $y^{2}=x^{2}(2-x)$.
$y^{2}=x^{2}(2-x)$ বক্রের যে লুপ (loop) তৈরী হয় তার উপরার্ধকে ঘোরালে উৎপন্ন solid-টির আয়তন নির্ণয় করুন।
b) Find the surface area of the solid generated by revolving the cycloid $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ about its base. 4 $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ cycloid-টিকে ভৃমির (base) সাপেক্ষে ঘোরালে যে সলিড (solid) তৈরী হয় তার বক্রতলের ক্ষেত্রফল নির্ণয় করুন।.

GROUP - E

বিভাগ - ङ
(Full Marks : 10)
(পূর্ণমান : ১০)
21. Answer any one question :

বে কোন একটি প্রশ্নের উত্তর দিন :
a) Solve : $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-y=0$.

সমাধান করুन : $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}-y=0$
b) Find the particular integral of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=x^{5}$.
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=x^{5}$-এর বিশেষ সমাকল निর্ণয় করুন।
c) Reduce the equation $3 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=x^{4}$ from variable coefficient to constant coefficient.
$3 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 y=x^{4}$ সমीকরণটিকে চन (variable) সহগ वেকে ধ্বুবক (constant) সহগের সমীকরণে পরিণত করুন্ন।
22. Answer any two questions:

যে কোন দুটি প্রশ্নের উত্তর দিন :
a) Solve : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x^{2} e^{3 x}$

সমাধान করুन : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=x^{2} e^{3 x}$
b) Solve : $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x,(a$ is a real number $)$.

সমাধান করুন : $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a^{2} y=\sec a x$, (a একটি বাস্তব সংখ্যা) ।
c) Solve : $\quad x^{2} \frac{\mathrm{~d}^{2} y}{d x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\log x$

সমাধাन করুन : $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\log x$
d) Find the orthogonal trajectories of the family of curves $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, where a is a variable parameter.
$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$, (যেখানে a একটি চল (variable) প্যারামিটার), বক্রগোষ্ঠীর লম্ব প্রক্ষেপ পথ নির্ণয় করুন।

