

 $CHE(H) - \underline{\mathcal{H}}$ $P - \underline{\mathcal{H}}$

West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2015 PART-II CHEMISTRY- Honours Paper- IV

Duration : 2 Hours

1.

Full Marks : 50

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Use separate answer scripts for [CEMAT-24-PA & CEMAT-24-PB]

CEMAT-24-PA

Answer any two questions, taking one from each Unit.

UNIT - I

a) State the postulates of Planck's quantum theory. Planck distribution law for black body radiation in the frequency range v to v + dv is

 $u_{v}d_{v} = \frac{8\pi v^{2}}{c^{3}} \frac{hv}{e^{hv/kT}-1} dv$. Show that the wavelength corresponding to

the maximum energy density is inversely proportional to the absolute temperature. [Terms have their usual significance] 1+3

b) Define a Hermitian operator. Confirm whether the operator, $\frac{h}{2\pi i} \frac{d}{dx}$ is Hermitian or not. 3

SUB.-B.Sc.(HN)-CEMA-6044

[Turn over.

c)

c)

e)

- What does the term degenerate levels mean ? Determine the degree of degeneracy of the level $\frac{38h^2}{8ma^2}$ of a particle in a cubical box. 1 + 2
- d) In the Compton experiment, a beam of X-rays with wavelength
 0.0588 nm is scattered through an angle of 45°. What is the wavelength
 of the scattered beam ?
- 2. a) Calculate the uncertainty in position assuming uncertainty in momentum within 0.1% for (i) a tennis ball weighing 200 gm and moving with a velocity of 10 metre/sec (ii) an electron moving in an atom with a velocity of 2×10^8 cm/sec. Comment on the result.

b) Which of the following functions are acceptable in quantum mechanics?

(i) $\cos x + \sin x$ for $0 \le x \le \frac{\pi}{2}$

(ii) e^{-ax} for $x \le 0$.

Show that the length of the one dimensional box is an integral multiple of $\lambda/2$, where λ is the wavelength associated with the particle wave. 3

2

- d) If \hat{A} and \hat{B} are Hermitian operators, show that $\hat{A}\hat{B}$ is a Hermitian operator if $\hat{A}\hat{B} = \hat{B}\hat{A}$. $2\frac{1}{2}$
 - Determine the value of x at which the first excited wave function of the simple harmonic oscillator exhibits maximum or minimum.

 $[\text{ Given}: \psi_1(x) = \left(\frac{a}{4\pi}\right)^{\frac{1}{4}} (2\alpha^{\frac{1}{2}}x)e^{-\alpha x^2/2}, \quad \alpha = (k\mu)^{\frac{1}{2}}/\hbar, \ k = \text{ force constant},$ $\mu = \text{ reduced mass }] \qquad \qquad 2\frac{1}{2}$

SUB.-B.Sc.(HN)-CEMA-6044

Unit - II

a) How much more likely is a 1s electron in a hydrogen atom to be at a distance a_0 from the nucleus than at the distance $a_0/2$? Given : Radial wave function of 1s electron : $R = \frac{2}{a_0^{3/2}}e^{-r/a_0}$. 3

- "In the photostationary state of dimerization of anthracene at its large concentration, the concentration of dimer is independent of the concentration of monomers." Justify.
- c) An uranyl oxalate actinometer is irradiated for 20 mins with light of $\lambda = 4350$ Å and oxalic acid equivalent to 15 ml of 0.001 (M) KMnO₄ is found to have been decomposed. The intensity of the incident beam is 3.245×10^{16} S⁻¹. Find the quantum yield.
- d) Explain photosensitized reactions and give an example of photosensitized reaction which is useful to mankind.
- 4. a) Hydrogen wave function is given by $\psi_{1S} = (1/\pi a_0^3)^{1/2} e^{-r/a_0}$. Determine the most probable value of r in this state.
 - Briefly explain the phenomena of fluorescence and phosphorescence. 3

SUB.-B.Sc.(HN)-CEMA-6044

b)

3.

b)

[Turn over

The reaction ($2 A \rightleftharpoons A_2$) occurs both thermally and photochemically. c)

The photochemical reaction takes place with the following steps :

(i)
$$A \xrightarrow{hv(I_{abs})} A^*$$

(ii) $A^* + A \xrightarrow{K_2} A_2$
(iii) $A_2 \xrightarrow{K_3} 2A$
(iv) $A^* \xrightarrow{K_4} A + hv'$.

(iv)

Applying the steady state approximation to A^* ,

Show that $\begin{bmatrix} A_2 \end{bmatrix} = \frac{I_{abs}}{K_3 \begin{bmatrix} 1+K_4/K_2(A) \end{bmatrix}}$ at photostationary equilibrium.

Also, show that $\begin{bmatrix} A_2 \end{bmatrix}$ is independent of $\begin{bmatrix} A \end{bmatrix}$, when $\begin{bmatrix} A \end{bmatrix}$ is present in large 3+2 excess.

CEMAT-24-PB

Answer any two questions taking one from each unit.

Unit - I

5. What do you mean by fugacity of a gas ? Express fugacity in terms of a) measurable properties (such as P, V) of the gas and state how it can be determined. 3

SUB.-B.Sc.(HN)-CEMA-6044

Show that

b)

C)

(i)
$$\left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_j \neq n_i} = \left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_j \neq n_i}$$

(ii) $\frac{d \ln k_p}{dT} = \frac{\Delta H^\circ}{RT^2}$. 2×2

5

- At 25°C for the reaction : $Br_2(g) = 2Br(g)$, we have $\Delta G^\circ = 161.67$ KJ/mol and $\Delta H^\circ = 192.81$ KJ/mol. At what temperature will the system contain 10 mol per cent bromine atoms in equilibrium with bromine vapour at P = 1 atm.
- d) 'If $\Delta G^{\circ} = 0$ for a reaction, the reaction is thermodynamically impossible.' Comment. 2
- 6. a) For the equilibrium $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g)$.

 $K_p = 8 \times 10^{-9}$ at 127°C. Calculate the degree of dissociation of phosgene and ΔH° for the reaction at that temperature.

[Given : total pressure is 2 atm and $\Delta S^{\circ}_{400K} = 30$ cal deg⁻¹mole⁻¹] 4

- b) Derive the relation $\sum_{l} n_l d\mu_l = 0$. 3
- c) A solute goes into solution with evolution of heat. How will the solubility change with temperature ? Assume van't Hoff equation to apply in case of solubility.

SUB.-B.Sc.(HN)-CEMA-6044

[Turn over

d)

What is meant by chemical potential (μ) of a substance ? Is it an extensive property ? Explain the significance of μ with regard to equilibrium state of a system.

UNIT-II

- 7. a) Define conductance, specific conductance and equivalent conductivity of an electrolyte solution. Write down the SI units of each quantity. $3 + 1\frac{1}{2}$
 - b) While ionic mobility increases with temperature, both the transport numbers of H⁺ and Cl⁻ ions in aqueous solution of HCl approach 0.5 as the temperature is increased. Justify or criticize. $2\frac{1}{2}$
 - c) The standard reduction potentials for Fe⁺³, Fe⁺²: Pt and Sn⁺⁴, Sn⁺²: Pt at 25°C are 0.77V and 0.15 V. Set up the cell, write down the cell reactions and calculate the equilibrium constant of the reaction occurring in the cell.
- 8.
- a) Discuss the principle of determination of pH of a solution using a glass electrode. 3
- b) Given that E° is 0.152 for Ag + I' = AgI + e^- at 25°C and E° for Ag = Ag⁺ + e^- is - 0.800 V at 25°C. Calculate K_{sp} for AgI. 2

SUB.-B.Sc.(HN)-CEMA-6044

A conductivity cell has a resistance of 250 Ω when filled with 0.02 M KCl at 298 K and one of 10⁵ Ω when filled with 6 × 10⁻⁵ M NH₄OH solution. The specific conductance of 0.02 M KCl is 0.277 $\Omega^{-1}m^{-1}$ and the equivalent conductances of NH₄⁺ and OH⁻ are 7.34 × 10⁻³ and 0.0198 m² equiv⁻¹ Ω^{-1} respectively. Calculate the cell constant and the degree of dissociation of NH₄OH solution in 6 × 10⁻⁵ M solution. 3

Define buffer capacity. Find the condition when it has maximum value.

2 + 2

SUB.-B.Sc.(HN)-CEMA-6044

c)

d)