West Bengal State University
 B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014
 PART - III
 CHEMISTRY - HONOURS
 Paper - V
 (NEW \& OLD SYLLABUS)

Duration : 4 Hours]
[Full Marks : 100
Candidates are required to give their answers in their own words as far as practicable.
The figures in the margin indicate full marks.

(NEW SYLLABUS)

Use separate answer scripts for [CEMAT 35-IA \& CEMAT 35-IB] and for [CEMAT 35-AA \& CEMAT 35-AB].

CEMAT 35- IA

Answer any two (2) questions taking one from each Unit.

UNIT - I

1.

a) Explain why OH^{-}is a weaker field ligand than $\mathrm{H}_{2} \mathrm{O}$?
b) What do you mean by trans effect ? Predict the products expected if one mole of $\left[\mathrm{PtCl}_{4}\right]^{2-}$ is reacted successively with the following reagents :
i) 2 moles of ammonia
ii) 2 moles of pyridine
iii) 2 moles of chloride
iv) 1 mole of nitrite $\left(\mathrm{NO}_{2}^{-}\right)$. $1+3$
c) What is CFSE ? From the view point of CFSE show whether $\mathrm{Co}_{3} \mathrm{O}_{4}$ is a normal or an inverse spinel. $1+2$
d) For the $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion, the mean pairing energy, P , is found to be $23,500 \mathrm{~cm}^{-1}$. The magnitude of Δ_{0} is $13,900 \mathrm{~cm}^{-1}$. Calculate the CFSE for this complex ion corresponding to high-spin and low-spin state. Which state will be more stable ?
$11 / 2+11 / 2+1$
2. a) Determine the ground state term symbol for the following ions :
(i) Ni (II) and ii) $\mathrm{Co}(\mathrm{II})$.
b) A metal forms two complexes in the same oxidation state. In one complex, the magnetic moment is 4.9 B.M. while in another it is 0 B.M. Which of the following metal(s) fits this behaviour and why ?

Cr (III), Mn (II), Mn (III), Fe (II), Fe (III), and Co (II).
c) Explain the nature of Jahn Teller distortion expected for an octahedral complex of a d^{9} system.
d) What is spectrochemical series ? Justify the position of I^{-}and CN^{-}in it.

UNIT - II

3. a) What do you mean by lanthanide contraction ? Explain the impact of lanthanide contraction on the chemical behaviour of the lanthanides.

$$
2+2
$$

b) Discuss the trends in the stability of higher oxidation states of transition metals on gradually passing from $3 d$ to $5 d$ transition series.
c) How does KMnO_{4} reacts in alkaline medium ? 1
d) How would you prepare $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ from chromite ? Give balanced chemical equations. Give use of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
4. a) Give a brief outline for the separation of lanthanides by ion-exchange method.
b) Write the method of preparation of the following with chemical equations and give their uses :
$21 / 2+21 / 2$
(i)
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(ii) $\quad \mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
c) Explain the relative advantages and disadvantages of using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4} in quantitative estimation in acid medium.

CEMAT 35- IB

Answer two (2) questions taking one from each Unit.

UNIT - I

5. a) Give a method of preparation of $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$. Identify the species (A), (B), (C) and (D) in the following reaction sequence :
$2+4$

$$
\begin{aligned}
& \uparrow \\
& \text { i) }\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} \\
& \text { ii) } \mathrm{H}_{3} \mathrm{PO}_{4} \\
& B \underset{\mathrm{HNO}_{3}}{\stackrel{\text { Conc. }}{ } \mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \xrightarrow{n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}} D} \\
& \text { i) } \mathrm{HCHO} \\
& \text { ii) }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH} \\
& \text { C }
\end{aligned}
$$

b) Explain with examples the different coordination modes of NO.
c) What is Zieglar-Natta catalyst ? What products do you expect when ethene and propene are individually treated with Zieglar-Natta catalyst?
6. a) The vanadium-carbon distance is $\mathrm{V}(\mathrm{CO})_{6}$ is 200 pm , but in the anion $\left[\mathrm{V}\left(\mathrm{CO}_{6}\right)^{-}\right.$it is only 193 pm . Explain.
b) Assuming 18 -electron rule to be valid, find the number of metal-metal bonds in (i) $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ and (ii) $\mathrm{Os}_{4}(\mathrm{CO})_{14}$.
$11 / 2+11 / 2$
c) Stability of ferrocene is greater than cobaltocene. Explain. 2
d) Give short notes on the following :
i) Fluxional molecules
ii) Haptacity.
e) How would you account the larger $\mathrm{Pt}-\mathrm{Cl}$ distance in the Cl^{-}ion trans to ethylene than the other two Pt-Cl distances in Zeise's salt?

UNIT - II

7. a) Briefly discuss the principle of gravimetric estimation of sulphate and hence explain gravimetric factor.
$3+1$
b) With suitable example, discuss the role of pH in complexometric titration.
c) Describe dissolution scheme of pyrolusite and hence write the principle for estimation of manganese in this solution.
$2+2$
d) What do you mean by co-precipitation ? 2
8. a) Outline a scheme (with equation) for the estimation of CaCO_{3} in dolomite.
b) How does $\mathrm{KH}\left(\mathrm{IO}_{3}\right)_{2}$ act as an oxidising agent ? Discuss with suitable example.
c) What is the composition of Zimmerman-Reinhardt solution ? Why is it used in the estimation of $\mathrm{Fe}(\mathrm{II})$ by KMnO_{4} solution in presence of Cl^{-}ion? 4
d) Explain with suitable example, the role of metal-ion indicator in complexometric estimation.

CEMAT 35-AA

Answer two (2) questions taking one from each Unit.

UNIT - I

1. a) Explain the biological function of hemoglobin stating the role of the metal ion present in its active site.

3
b) Briefly explain the biofunction of the following: $2+2$
i) Ferredoxin
ii) Carbonic anhydrase.
c) What are the essential, trace and ultratrace elements ? Explain with examples.
d) What is chelation therapy ? Give an example. $2+1$
2. a) Define PS I and PS II and explain the role of metal ion involved in them. 4
b) What is Na^{+}ion pump ? How does it function ? 3
c) Name one Pt complex acting as drug and state its therapeutic
d) What is the biological function of cytochrome ? 2
e) What is the role of Ca^{2+} ion in human system ? 2

UNIT - II

3. a) What is Buckminster Fullerene ? Mention some of its unique properties with relation to its structure. $1+2$
b) Write two applications of gold nanoparticles. 3
c) Define polymers. All polymers are macromolecules but all macromolecules are not polymers. Justify. $1+2$
d) A sample of polymer consists of 10% by weight of polymer of molecular weight 15,000 and 90% by weight of polymer of molecular weight $1,50,000$. Determine the weight average and number average molecular weights of the polymer.
4. a) What are zeolites ? Give one example. How do they accommodate guest ions?
b) Explain metal surface catalysis with an example. 3
c) What is meant by metal cluster structure ? Explain with an example.
d) Nanoparticles behave differently from macro particles. Why?

CEMAT 35-AB

Answer two (2) questions taking one from each Unit.

 UNIT - I5. a) Describe important features of the Watson and Crick double helical model of DNA.
b) What is denaturation of proteins ? Mention the condition under which denaturation occurs ?
c) Discuss the salient features of α-helix structure of protein. 3
d) What are the similarities and differences between nucleotides of DNA and RNA ?
6. a) i) How are enzymes classified ? Name the different classes of enzymes.
ii) What is a coenzyme ? Give one example. $3+2$
b) What is the difference between nucleotides and nucleosides ? Explain with example.
c) What is tertiary structure of protein ?
d) What is the basic requirement for a protein to have quaternary structure? Explain with one example.

UNIT - II
7. a) Discuss the mechanism of enzyme inhibition. Show that the equation for Lineweaver-Burk double reciprocal plot for competitive inhibition is $\frac{1}{V}=\frac{K_{m}}{V_{\max }}\left(1+\frac{[I]}{K_{i}}\right) \times \frac{1}{[S]}+\frac{1}{V_{\max }}$
b) What is Zeta potential ? Explain the stability of lyophobic colloids in the context of zeta potential.
c) Discuss the effect of pH on enzyme activity. : 2
8. a) What is turnover number ? 2
b) What do you mean by electrophoresis ? How molecular weights of proteins can be determined by gel electrophoresis ? $2+3$
c) What is an autocatalytic reaction ? Explain with an example. 3
d) Define isoelectric point. Give an example. 2

(OLD SYLLABUS)

Duration : 4 Hours]
| Full Marks : 100
Use separate answer scripts for Group A and Group B.
Group - A
[Full Marks : 50]
Answer any three taking one question from each Unit. UNIT - I

1. a) Derive thermodynamically a relation between the osmotic pressure of a dilute solution of a solute and its molar concentration. State the assumptions and approximations involved. 4
b) Calculate the van't Hoff factor and the degree of dissociation of a $0 \cdot 1$ molal aqueous solution of a monobasic acid, HA, which freezes at $-0.3^{\circ} \mathrm{C}$. Given, $K_{f}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
c) Prove that the phase rule $F=C-P+2$ remains unchanged even if one of the components is missing in some of the phases present at equilibrium.
d) For a one-component system, the triple point is invariant, whereas the freezing point is variable. Explain.

2
e) Explain, with $S-T$ diagram, the principle of cooling by adiabatic demagnetization of paramagnetic substances. 3
f) The residual molar entropy of a crystalline substance at absolute zero is $9.134 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Find out the number of possible orientations that a molecule of the substance can adopt at this temperature.
2. a) Find an expression for $\Delta S_{m i x}$ for an ideal binary solution. 4
b) A solution containing 1 g of urea in 1 kg of water freezes at the same temperature as another solution containing 1.5 g of a non-electrolyte ' S ' in the same amount of water. Calculate the molar mass of the solute ' S '.

2

c) Explain the phase diagram of a two-component system exhibiting liquidliquid equilibrium with an upper critical solution temperature.
d) Show that the internal energy (U) of a system containing N noninteracting particles can be expressed in terms of its molecular partition function (Q) as

$$
U=N k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{N, V}
$$

The terms have their usual significance.
e) Calculate the molecular partition function for a two-level (both nondegenerate) molecular system at 300 K with an excited state $300 \mathrm{~cm}^{-1}$ above the ground state ($\left.\epsilon_{0}=0\right)$.

UNIT - II

3. a) What is the lowest limit of the spacing of the lattice planes to produce X-ray diffraction spectra for a given radiation ?
b) An element occurs in two crystalline forms α and β. The α-form has FCC structure with $a=3.68 \AA$ and the β-form has BCC structure with $a=2.92 \AA$. Calculate the ratio of their densities.
c) The dipole moment of p-dichlorobenzene is zero, but that of p-dihydroxybenzene is non-zero. Explain.
d) What is orientation polarization ? How does it vary with temperature ? 2
e) What is zeta potential ? How is it important for the stability of colloids ? 4
f) The mass-average molar mass is equal to the number-average molar mass of a monodisperse polymer. Explain. What is meant by polydispersity index of a polymer sample?
4. a) State the different factors on which X-ray scattering power of a crystal depends. Deduce the Bragg's equation for constructive interference in X-ray crystallography.
b) Determine the Miller indices of the planes that intersect the crystal axes at (i) $a, 2 b, 3 c$ and (ii) $a, b,-c$.
c) Discuss the viscosity method for the determination of molar masses of macromolecules.
d) What do you mean by CMC of a surfactant ? Will there be any change in the value of CMC if hydrophobicity of the surfactant increases? 3
e) Why does the molar polarization of a polar molecule decrease at high - frequencies ?
f) The dielectric constant of a liquid at $25^{\circ} \mathrm{C}$ is 4.288 . The molar mass of the liquid is $112 \mathrm{gmol}^{-1}$ and its density at $25^{\circ} \mathrm{C}$ is $1.108 \mathrm{gmol}^{-1}$. Calculate the value of its molar polarization.

UNIT - III

5. a) What are the different radiative and non-radiative paths by which the excited state of a molecule can decay ? Explain with the help of Jablonsky diagram.
b) Discuss with an example what is meant by photostationary state. 2
c) What influences can be drawn if the quantum efficiency of a photochemical reaction is different from unity ? 2
d) State the effect of anharmonicity on the vibrational spectra of a heteronuclear diatomic molecule.
e) The fundamental and the first overtone transitions of ${ }^{14} \mathrm{~N}^{16} \mathrm{~B}$ are centered at $1876.06 \mathrm{~cm}^{-1}$ and $3724.20 \mathrm{~cm}^{-1}$ respectively. Calculate the exact zero-point energy.
f) The vibrational spectra of HCl shows the following :
i) a very intense absorption at $2886 \mathrm{~cm}^{-1}$
ii) a weaker absorption at $5668 \mathrm{~cm}^{-1}$ and
iii) a very weak absorption at $8347 \mathrm{~cm}^{-1}$.

Explain the observations.
6. a) State the difference observed in the rotational absorption spectra of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ and ${ }^{13} \mathrm{C}^{16} \mathrm{O}$ with explanation.
b) How would you determine the atomic mass of C^{13} accurately using rotational absorption spectroscopy ?
c) The symmetric stretching of CO_{2} is IR inactive but Raman active. Explain.
d) Define 'quantum yield' of a photochemical reaction. How would you determine it experimentally ?
e) State and explain Franck-Condon principle.
f) The molar absorption coefficient of a solute at 440 nm is $323 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. When light of that wavelength passes through a 7.50 mm cell containing a solution of the solute, $52 \cdot 3 \mathrm{per}$ cent of the light was absorbed. What is the concentration of the solution ?

Group - B

[Full Marks : 50]
Answer any three taking one question from each Unit.

UNIT - I

7. a) Give retrosynthetic analysis and an efficient synthesis of the following compounds :
i)

ii)

b) Explain the following (any one) :
i) Furan is an enol ether
ii) Pyrrole undergoes electrophilic substitution faster than Furan.
c) Using Fisher indole synthesis, how would you get

d) Predict the products of the following reactions (any two):
i)

ii)

iii)

e) Outline the synthesis of metronidazole or chloroquine. State one common pharmaceutical use of it.
8. a) Give example of any two of the following :
i) Two-group disconnection
ii) Illogical disconnection
iii) Disconnection of 1,5-dicarbonyl compound.

OR
Design synthesis of the following compounds by disconnections and FGIs (any two) :
i)

ii)

iii)

b) How can you synthesise pyrrole and furan by taking ethyl acetoacetate as the starting material ? Write mechanistic details.
c) Carry out the following conversions with mechanism in each case : 2×2 i) Pyridine \rightarrow 4-Nitropyridine
ii) Indole \rightarrow Quinoline.
d) Furan cannot be sulphonated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ but sulphonation can be done with SO_{3} in presence of pyridine. Explain the observation.

> OR

Pyrrole can act as both acid and base. Justify.
e) Outline the synthesis of paracetamol and mention its medicinal use.
f) How can you prepare congo red?

UNIT - II

9. a) Draw the preferred chair conformations of cis- and trans- 1, 3-dimethylcyclohexane. Indicate in both cases, their optical properties considering symmetry elements present.
b) Explain the fate of $[A]$ in case of the following pericyclic reactions :
i) Photochemical electrocyclic ring closure
ii) Thermal cycloaddition reaction with ethylene.

c) Predict the products of the following with plausible mechanism in each case (any two) :

$$
2 \times 2
$$

ii)

iii)

d) i) Account for the preference for endo-addition in Diels-Alder cyclisation from symmetry considerations.

2
ii) What are the symmetry allowed pathways for thermal [1, 3] sigmatropic rearrangement?

OR
Rationalise the following reaction by FMO showing steps :

10. a) Solvolysis rate of the cis-isomer of 4-tert-butylcyclohexyltosylate is greater than that of the trans-isomer. Explain.
b) Write the product of the thermal sigmatropic reaction of :

c) Explain the following observations :
i) For trans-2-bromocyclohexanol both the diequatorial and the diaxial conformers are almost equally populated.
ii) Trans-4-tert-butyl tosylate undergoes bimolecular elimination with bromide rather than with a stronger base ethoxide ion.
d) i) Between cis- and trans- isomers of 4-hydroxycyclohexane carboxylic acid, the former readily forms lactone while the other does not. Explain.
ii) Suggest a mechanism for the following transformation :

e) Predict the products of the following reactions from FMO considerations: (any one)
i)

ii)

f) Suggest a mechanism for the following reaction :

11. a) Explain the mechanism of osazone formation with special reference to Amadori rearrangement. Why osazone formation does not proceed beyond the first two carbon atoms ?

OR
How would you convert an aldose into its epimer ?
b) Write down the conformations of α - and $\beta-\mathrm{D}(+)$ glucopyranose. Which anomer predominates in an aqueous solution of $\mathrm{D}(+)$ glucose and why ? 3
c) Mention the principle followed in the estimation of glycine. 1
d) Give a brief account of the classification of enzymes. What are coenzymes ? Give example.
e) Draw the conformational structure of the aldohexose epimeric with glucose at C-3.
f) Synthesise any one of the following amino acids as indicated :
i) Aspartic acid (from diethylmalonate)
ii) Tryptophan (by azlactone synthesis).
12. a) Define mutarotation. Give mechanism and show that amphoteric solvent is necessary for mutarotation.

Synthesise the dipeptide L-alanyl-L-phenylalanine using suitable protecting group.
b) When D-glucose is treated with methanol in presence of acid under reflux, both the anomers of methyl D-glucopyranoside are formed. Give the mechanism of their formation.
c) Show the reaction steps of the Edman degradation of NH_{2}-CHR-CO-NH-pep. 3
d) How would you convert D-fructose to D-glucose ?3
e) What happens when alanine is heated with acetic anhydride in pyridine ? Give the mechanism involved.

3
OR
Identify compounds (A-D) in the following sequence of transformation. Suggest a mechanism for the conversion of (B) to (C).

