West Bengal State University

B.A./B.Sc./B.Com (Honours, Major, General) Examinations, 2014

182

PART - II

CHEMISTRY — HONOURS

PHYSICAL CHEMISTRY, CEMAT 24PA, 24PB

Paper - IV

(NEW & OLD SYLLABUS)

Duration : 2 Hours

[Full Marks : 50

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

(NEW SYLLABUS)

(Use separate answer-script for answering CEMAT-24PA and CEMAT-24PB)

CEMAT-24PA

Answer any *two* questions taking *one* from each Unit. **UNIT – I**

a) Find the value of the commutators [x, p_x] and [x, p_y]. 3
b) Calculate the probability that a particle in the ground state will be found between 0.65 L and 0.67 L in a one dimensional box of length L (0 ≤ x ≤ L). [Given : ψ₁(x) = √2/L sin(πx/L)] 3

c)

1.

Show that the wave function, $\psi_0(x)$, defined below, is the eigenfunction of the Hamiltonian operator of a one dimensional harmonic oscillator.

[Given : Potential energy, $u(x) = \frac{1}{2}kx^2$,

$$\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2}$$
 where, $\alpha = \frac{(km)^{1/2}}{\hbar}$

d)

other terms have their usual meaning.]

Find the de Broglie wavelength of the electrons that have been accelerated from rest through a potential difference of 40 kV.

[Given : electronic charge, $e = 1.602 \times 10^{-19}$ C, $m_e = 9.109 \times 10^{-31}$ kg]

3

a) What do you mean by zero point energy of a particle executing simple harmonic motion ? The occurrence of zero point energy for such a particle is consistent with the Heisenberg Uncertainty Principle. Explain.

2 + 2

4

4

Show the schematic plots for each of following cases of photoelectric b) effect :

- Photoelectric current versus potential difference for two different intensities of UV-light.
- Maximum photoelectron kinetic energy versus frequency of incident UV-light for two different metal surfaces having different work functions.

Give reason for each case.

c) If $\hat{H}\psi_1 = E_1\psi_1$ and $\hat{H}\psi_2 = E_2\psi_2$, then under what conditions,

 $\psi = C_1\psi_1 + C_2\psi_2$ will be an eigenfunction of the operator, \hat{H} ? What will be the eigenvalue ? Justify your answer.

[Given : E_1 and E_2 are eigenvalues, $C_1 \& C_2$ are arbitrary constants.]

Write down Wien's displacement law indicating the quantities involved. 2 UNIT - II

Show that in the photochemical decomposition of HI, the rate of disappearance of HI does not depend on the concentration of HI. What is the quantum yield of this reaction ? 3 + 1The radial wavefunction for 2s orbital of a hydrogen atom is given by

 $R_{2,0} = N(2-r/a_0) e^{-r/2a_0}$, N = constant.

i) Determine the number of location of node(s) in the 2s wavefunction.

Write down the corresponding radial distribution function. Give ii) the diagram of the distribution function. 2 + 2

Find the average value of the distance in terms of a_0 of an electron from the nucleus in the 1s state of hydrogen atom.

[Given : $R_{1s}(r) = \frac{2}{a_0^{3/2}}e^{-\rho/2}$ where $\rho = \frac{2r}{na_0}$, a_0 = Bohr radius,

$$\int_{0}^{\infty} x^{n} \exp(-ax) dx = n!/a^{n+1}$$

a) b)

d)

b)

c)

3. a)

What do you mean by photosensitization ? Give one example. 2 + 1Calculate the number of photons of wavelength 350 nm that have the same energy content of 1 kcal.

c)

184

Find the point at which the probability density of the 3d, 2 orbital of the hydrogen atom will be highest.

[Given : $\psi_{320} = cr^2 \exp(-r/3)(3\cos^2\theta - 1)$ where c contains all the constants of the wavefunction and ψ_{320} is expressed in atomic units.] 4

d) If the molar absorption coefficient of a solution is 475 m²/mol, how thick a layer must be used to reduce the intensity of the transmitted beam to 20% of its initial value ? The concentration is 0.126 mol dm-3.

CEMAT-24PB

Answer any two questions taking one from each Unit.

UNIT - I

5.

- Find the criterion for a spontaneous process in a system at constant temperature and volume and hence apply this to explain that mixing of two ideal gases at constant temperature and volume should be spontaneous. | Consider mechanical work only | 2 + 2
- b)

c)

d)

a)

Show that $\mu_i = \left(\frac{\partial H}{\partial x_i}\right)_{S,P,x_{j \neq i}} = \left(\frac{\partial A}{\partial x_i}\right)_{T,V,x_{j \neq i}}$

Prove that $\left(\frac{\partial \mu_i}{\partial P}\right)_{T \ N} = \frac{RT}{p_i}$

Consider the system as a mixture of ideal gases, p_i = partial pressure of ith constituent and other terms have usual meaning.

Consider the association of potassium atoms in the vapour phase to form dimers

 $2\kappa(g) \Longrightarrow \kappa_2(g)$

Suppose we start with 2 moles of $\kappa(g)$ and no dimers. Derive an expression for $\kappa_p(T)$ in terms of ξ_{eq} , the extent of reaction at equilibrium and the pressure, P, and hence show that if P increases ξ_{eq} should increase. 3

Starting from van't Hoff equation for a solid-vapour equilibrium arrive at the Clausius-Clapeyron equation.

b)

a)

6.

The equilibrium constant for the reaction described by $2 \operatorname{HBr}(g) \rightleftharpoons \operatorname{H}_2(g) + \operatorname{Br}_2(g)$

can be expressed by the empirical formula

 $ln \kappa = -6 \cdot 375 + 0 \cdot 6415 \ln (T/\kappa) - \frac{11790 \kappa}{T}.$

Find ΔH° at 25°C for the reaction.

3

4

3

C)

d)

a)

b)

c)

a)

b)

c)

At constant temperature and pressure 1 mol of a solute is dissolved in n_1 moles of a solvent of molecular weight M_1 . If the total volume of the solution be V litres and ρ be its density in g cm⁻³, then show that

$$\overline{V_1} = \frac{M_1}{1000 \left[\rho + V \frac{\mathrm{d}p}{\mathrm{d}v}\right]}$$

where $\overline{V_1}$ = partial molar volume of solvent.

One mol of toluene (latent heat of vaporisation = $33.42 \text{ kJ mol}^{-1}$) is vaporised at its boiling point (111° C) and at a pressure of 101.3 k Pa. Calculate ΔG and ΔA for this process.

[Given : *G* = Gibbs free energy, *A* = Helmholtz free energy]

3

4

3

UNIT - II

Define molar conductivity of an ion. For a z : z valent electrolyte, find the relation between the ion's mobility and its molar conductivity. 4

The ratio of the slopes of the linear portions in the plots of $ln \gamma_+$ versus

 $C^{1/2}$ for NaCl (aq) and CaCl₂ (aq) at 25°C is approximately 2 : 7. Justify / criticise the statement.

[C = molar concentration, $\gamma \pm = mean ionic activity coefficient$]

Consider the electrochemical cell whose cell diagram is Cd (s) | CdCl₂ (m) | AgCl (s) | Ag (s). Given that $\gamma_{\pm} = 0.0669$ for 1.00 molal CdCl₂ (aq). Calculate the value of the *emf* of the cell at 298.15 K.

[Given : standard reduction potentials at 25°C for $Cd^{2+}(aq)/Cd(s)$ and AgCl(s) | Ag(s), Cl⁻(aq) are - 0.403 and + 0.2224 V respectively.] 4

- Consider a suitable concentration cell without transference. Give the cell diagram. Find the net cell reaction and hence using Nernst equation on the net cell reaction find the expression of *emf* of the cell. 6
- "For the hydrolysis of a salt of weak acid and strong base, the weaker the acid, the greater is the hydrolysis of the salt." Justify/criticise the statement.

Give the schematic conductometric titration plots of conductance versus volume of titrant for the following cases :

i) $H_2SO_4(aq)$ vs. NaOH(aq)

ii) $NH_4Cl(aq)$ vs. NaOH(aq).

Give explanation for each case.

4

7.

,

1.

(OLD SYLLABUS) Group - A

186

(PHYSICAL CHEMISTRY)

Answer any one question from each Unit.

UNIT - I

- "Zero point energy of a simple harmonic oscillator does not violate a) Heisenberg's uncertainty principle." Justify. State the conditions of "acceptability of wave functions" in quantum b) mechanics with explanation. 3
- Evaluate the commutator $[\hat{A}, \hat{B}]$ where $\hat{A} = \frac{\partial}{\partial x} x$ and $\hat{B} = \frac{\partial}{\partial x} + x$. c)
- X-rays of wavelength 10 pm are scattered from a target. (i) Find the d) wavelength of the X-ray scattered through 45°. (ii) Find the maximum wavelength present in the scattered X-rays. (iii) Find the maximum kinetic energy of the recoil electron. 1 + 1 + 1Show that $\langle p_X \rangle$ is zero for all the stationary states of a particle in a

3

2

3

2

3

e)

f)

a)

b)

c) d) one-dimensional box of length L. $\left(\frac{1}{2}\right)$ for 1s orbital of hydrogen atom. Find (

[Given:
$$\psi_{1s} = \frac{1}{(\pi a_0^3)^{1/2}} \exp\left(-\frac{r}{a_0}\right)$$
].

$$\int_{0}^{\infty} x^{n} e^{-qx} dx = \frac{n!}{q^{n+1}}, n > -1; q > 0$$

Show that the average displacement of a harmonic oscillator, $\langle x \rangle$, is zero for all the quantum states of a harmonic oscillator. 2

State with explanation whether $i\frac{\partial}{\partial x}$ is a Hermitian operator or not. 3

Given
$$\hat{A} = x + \frac{\partial}{\partial x}$$
. Find the value of \hat{A}^2

Benzene may be regarded as a two-dimensional square box of side 3.5 Å and containing 6 π -electrons. What wavelength of light should be required to promote an electron from the ground state to the first excited

tate ? | Given,
$$m_{\rho} = 9 \cdot 11 \times 10^{-31}$$
 kg |

A microparticle can be found anywhere with equal probability within a e) length L. Find roughly its uncertainty in momentum. If the latter is the minimum possible value of its momentum, find also the minimum 2 kinetic energy.

2.

2

4

1

2

1

for

3

187

The radial wavefunction for 2s orbital of hydrogen atom is given by the

following expression : $R_{2,0} = N\left(2 - \frac{r}{a_0}\right) \exp\left(-r/2a_0\right)$, N is a constant.

- i) Determine the number and location of node(s) in the 2s wavefunction.
- ii) Write down the expression for the radial distribution function of a 2s electron and sketch the radial distribution curve. 2+2

UNIT - II

a) Show that $\sum n_i d\mu_i = 0$.

f)

b)

d)

e)

f)

a)

4.

3.

- Elucidate the concept of chemical potential as escaping tendency and mention the significance with respect to the equilibrium state of the system. 3
- c) Using Clausius inequality derive the criteria for equilibrium and spontaneity in terms of G and A. 2+2
 - Calculate K_p for the reaction 2NOCl $(g) \implies 2NO(g) + Cl_2(g)$, if at equilibrium the total pressure is 1 atm and partial pressure of NOCl is 0.7 atm at 200°C. Calculate ΔH °, if K_p increases by 1.5% per degree

around 200°C.

With the help of Gibbs-Helmholtz equation, obtain an expression of temperature coefficient of E° of a cell at constant pressure and hence suggest how the standard enthalpy change of a cell reaction can be determined. 2+2

Represent a cell whose overall cell reaction is following :

$$\operatorname{Ag}^{+}(aq) + \operatorname{Cl}^{-}(aq) \rightarrow \operatorname{AgCl}(s)$$

Show that $\left(\frac{\partial \mu_i}{\partial P}\right)_{T,N} = \overline{V_i}$.

b) Plot the following :

c) $ln K_p vs. 1/T$ (for exothermic and endothermic reaction) c) Derive Clausius-Clapeyron equation thermodynamically

liquid ᆃ vapour equilibrium.

d) In a study of the water-gas shift reaction,

 $CO_2(g) + H_2(g) \implies CO(g) + H_2O(g)$; a mixture of CO_2 and H_2 initially containing 42.4 mol% H_2 was brought to equilibrium in a closed vessel at 1259K. The system was then found to contain 15.2 mol% H_2 . Calculate K_p and ΔG° for the reaction at 1259K.

f)

b)

c)

e)

f)

a)

b)

Does the equilibrium constant of a chemical reaction depend on the e) following?

- Standard states chosen for the reactants and products; i)
- ii) The stoichiometric representation of the reaction.

188

Justify your answer.

2 + 2

2

2

- What is meant by liquid junction potential ? Why is KCl used in salt 2 + 1bridge to eliminate liquid junction potential?
- What do you mean by a concentration cell? g)

UNIT - III

- Plot the following : a)
 - λ vs. \sqrt{C} for acetic acid; i)
 - $\frac{1}{\lambda}$ vs. λ .C for acetic acid. ii)
 - State how the law of independent migration of ions can be utilized to determine the λ_0 of a weak acid, *e.g.* acetic acid.
 - Discuss the effect of temperature on the surface tension of the liquid. 3 Describe the "moving boundary method" for the determination of d) transport number of an ion.
 - Specific conductance of pure water is $38 \cdot 4 \times 10^{-9}$ ohm⁻¹cm⁻¹ at 18°C. The equivalent conductance at infinite dilution of H⁺ and OH⁻ are 315.2 ohm⁻¹cm² gm eqv⁻¹and 173.8 ohm⁻¹cm² gm eqv⁻¹, respectively. Calculate the ionic product of water at 18°C.
 - The speed ratio of Ag^+ and NO_3^- ions in an aqueous solution of $AgNO_3$ has been found to be 0.92. Calculate the transport number of each of them.
 - Describe a process for the determination of relative viscosity of a liquid. 4 The equivalent conductance at infinite dilution of HCl, NaCl and NaOAc are 426.2 ohm⁻¹cm², 126.5 ohm⁻¹cm² and 91.0 ohm⁻¹cm², respectively at 25°C. Calculate λ° for CH₃COOH. A conductance cell filled with 0.01(M) KCl has a resistance of 257.3 ohms at 25°C. The same cell filled with 0.2(N) CH₃COOH has the resistance 508.6 ohms. Calculate the dissociation constant of CH₃COOH.

[Given specific conductance for 0.01(M) KCl is 1.41×10^{-3} ohm⁻¹cm⁻¹].

3

5.

6.

2

c) Write the unit and dimension of the surface tension.

d) Explain why the mobility of Li^+ in water is less than that of K^+ ? 1

189

- e) A gas bubble of diameter 2 cm rises steadily through a solution of density 1.75 gm/c.c. at the rate of 0.35 cm/sec. Calculate the coefficient of viscosity of the solution neglecting the density of the gas. 3
- f) State and explain the effect of dilution on the magnitude of (i) conductance; (ii) specific conductance and (iii) equivalent conductance of a strong electrolyte.

and the side of the side of the store of the second