West Bengal State University B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013

PART - III

CHEMISTRY — HONOURS

Paper -VI (Gr. A + B)

Duration : 4 Hours]

1.

2.

3.

b)

Full Marks: 100

Answers to different Groups must be made in separate answer scripts. The figures in the margin indicate full marks.

Use separate answer scripts for each Group.

GROUP - A

Answer any three questions taking one from each Unit.

UNIT - I

a)	Name the principal ore of uranium and give its stoichiometry. How is uranium
	extracted from its ore ? Give a flow-chart. 1 + 1 + 4
b)	Aqueous Mn^{2+} ion is stable while Cr^{2+} ion is readily oxidised. Explain. 2
c)	Discuss the preparation and uses of any <i>two</i> of the following compounds : i) $Na_2[Fe(CN)_5NO]$ ii) $(NH_4)_2PtCl_6$ iii) $KMnO_4$. 3+3
d)	What happens when NH ₄ VO ₃ is ignited ? 2
a)	Absorption spectra of actinides are more intense as well as broad than those of
	the lanthanides. Explain. 4
b) -	Give the extraction of uranium from U_3O_8 . Give the balanced equations of the
	reactions involved. 4
c)	The most stable oxidation state of copper is +2 whereas Au ²⁺ is unstable
	towards disproportionation to Au^{3+} and Au^{+} . Explain. 4
d)	How would you prepare Na_3 [$Co(NO_2)_6$] ? Give one example of its application in
	qualitative analysis. 4
	UNIT - II
a)	Give the d-orbital splitting of the central metal atom in the following
illa"	complexes : 4
	i) Fe(CO) ii) K_[Ni(CN)].

Of the two isomers of [Pt $(NH_3)_2Cl_2$], one (A) reacts with thiourea (tu) to produce [Pt(tu)₄]²⁺ whereas the other isomer (B) produces [Pt(NH₃)₂(tu)₂]²⁺ when treated with the same reagent. Which isomer of [Pt(NH₃)₂Cl₂] is cis- and which one is trans-? Justify your answer. 1+1+2

CEMA(HN)-06

4.

5.

6.

why?	2+2
	1 . 1
d) Find out the μ_s values in the following complexes : i) $K_4[Mn(CN)_6]$ ii) $K_3[COF_4]$.	1+1
 e) Which one of the following pairs of complexes has larger cr stabilization energy and why? i) [CoCl₄]²⁻ and [Co(H₂O)₆]²⁺ ii) [CO(NH₃)₆]²⁺ and [CO(NH₃)₆]²⁺ 	ystal field 2 + 2 $NH_3)_6 ^{3+}$.
a) "Octahedral Cu(II) complexes are distorted." Explain it in the light of approximate energy diagram. What will be the energy difference $d_{x^2-y^2}$ and d_{xy} in the distorted state ?	CFT using e between 4 + 2
b) Of K_4 [Fe(CN) ₃] and K_3 [Fe(CN) ₆], one is paramagnetic while	e other is
 diamagnetic. Which is which and why ? c) Between cis- [Co(en)₂ Cl₂]⁺ and trans- [Co(en)₂Cl₂], which one will 	2 + 2 give more
intense d-d transition and why ? d) Find out μ_s in [Fe(H ₂ O) ₅ NO]SO ₄ .	1 + 3
e) Explain why KFe ^{\parallel} (Fe ^{\parallel} (CN) ₆] and KFe ^{\parallel} [Fe ^{\parallel} (CN) ₆] have the same cold	our. 2
a) How is Zeise's salt prepared ? Discuss its structure and bond	ing. What
happens when the salt is warmed with water ?	1+3+1
b) Complete the following reactions : i) $CO_2(CO)_8 + NO \rightarrow$ ii) $Cr(CO)_6 + C_6H_6 \rightarrow$	2
 c) What metals are present in the following metallo-enzymes ? i) Carboxypepdisase ii) Nitrogenase iii) Hydrogenase iv) Phosphatase. 	4
d) What metal ion causes Wilson's disease ? How would you remove the body ? What are ultratrace elements in the biological systems ?	the ion from $1 + 3 + 1$
a) What do you mean by hapticity of organometallic ligands? Give one each mono-, tri- and pentahapto modes of bonding of cyclopentadier	example of ne. 1 + 3
 b) Write short note on any one of the following : i) Hydroformylation of alkenes ii) Hydrogenation of olefins. 	4
c) What do you mean by chelation therapy ? Give an application o therapy in the treatment of metal toxicity.	f chelation $2+2$
 d) Between deoxy-haemoglobin and haemoglobin which one is parameters How does carbon monoxide destroy the normal activity of haemoglo the chemical formula of British-Anti-Lewsite. 	magnetic ? obin ? Give 1 + 2 + 1

CEMA	(HN)-06
------	-----	------

3

4

2

2

-	1	2.23		-
2D	\mathbf{n}	TTD	Carlos Carlos	D
		UF	-	

139

Answer any three questions taking one from each Unit.

UNIT - I

field

2 + 2

13+

using

tween 4+2

her is

2 + 2

more

1 + 32

What

3 + 1

2

4

9.

10.

c)

2

7.

One

and

- What do you mean by determinate and indeterminate errors in chemical a) analysis ? Find the product of the two binary numbers 1011 and 1001. Transform the product into decimal number. 2 + 2b) State Lambert-Beer's law and the conditions for its applicability in quantitative estimation. Does a change of pH influence the colour of a solution ? State with 2 + 2 + 1an example.
 - Discuss the principle of radiocarbon dating. c)
 - d) State the principle of potentiometric redox titration with an example. Briefly discuss the method of end point detection for such titration. 4 + 2
- 8. The result of a quantitative analysis is 21.39 g compared to the accepted value a) of 22.05 g. What is the relative error in % and parts per thousand ? 2
 - Distinguish between atomic absorption spectroscopy and atomic emission b) spectroscopy. 3
 - Briefly discuss the principle of isotope dilution analysis. Give an example. C)
 - d) Sketch the pH titration curve of a weak acid against a strong base in aqueous solution. 3
 - Describe the principle of the spectrophotometric estimation of manganese. 4 e)
 - What safety measures are taken to eliminate the hazards of radiations ? f)

UNIT - II

- State the principle of gravimetric estimation of aluminium. 4 a) Give examples of masking and demasking agents indicating their role in b) complexometric titrations. 4 2 + 2
 - Describe the estimation of the following :
 - Pb in water samples i)
 - ii) NO₃ in soil.
 - Oxidation of oxalate ion by permanganate in 2(N) H₂SO₄ medium is slow at the d) early stages, but takes place rapidly thereafter. Explain. 2
 - Why is starch added near the end point in an iodometric titration ? e)
 - Describe the principle of gravimetric estimation of phosphate explaining a) 4 gravimetric factor.
 - Briefly discuss the principle of estimation of Ca^{2+} and Mg^{2+} in a mixture by b) 4 EDTA.

4

ation tic ? Give

2 + 1

140

- c) How does the dye fluorescein act as indicator in the titration of chlorides with AgNO₃ solution ?
- Which one is a better oxidising agent KMnO₄ in acidic medium or KMnO₄ d) alkaline medium ? Explain.
- Outline a principle for the estimation of Cr and Mn present together in e) sample of steel.

UNIT - III

- 11.
- R_f values of L-lysine, DL- α alanine and L-leucine are 0.14, 0.36 at a) 0.65 respectively. Which one of these amino acids in the TLC separation w occur at the top and which one at the bottom ? Justify your answer.
- How is the strength of a formalin solution determined ? Why is formal b) solution always acidic ?
- State the principle for estimation of glucose. C)
- Define the following terms : d)
 - i) SPM in air sample
 - ii) DO and TOC in water sample.

What is extraction coefficient in solvent extraction ? What is its importance ? e)

f

Calculate the distribution ratio of iodine when 25 ml of aqueous iodine wa extracted with 25 ml of chloroform and the % of extraction was found be 98.5%.

1 -

4

12. a) State the principle for the estimation of the following :

1)	Phenol	11)	Glycine
iii)	SO ₂ in air	iv)	NO, in air

Give the principle and one application of column chromatographic technique. b)

c)

Define exchange capacity of an ion-exchanger. How is the exchange capacity

a cation-exchange resin determined ?