West Bengal State University
 B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2013
 Part - I
 CHEMISTRY - HONOURS
 Paper - I

Duration : 4 Hours
[Maximum Marks : 100

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Use separate answer scripts for CEMAT-11-LA/IB and CEMAT-11-OA/0B

CEMAT - 11-LA

(Full Marks : 50)
Answer any two questions, taking one from each Unit.

UNIT - I

1. a) What are nuclear isomers ? Cite an example where a metastable nucleus has been used. $2+1$
b) Explain with the help of a binding energy curve why the heavier nuclides undergo fission to produce stable nuclides.
c) Obtain an expression for the total energy of an electron in the He^{+}ion. On the basis of Bohr's equation for energy levels of single electron system. calculate the 2nd I.E. of He [given that the 1st I.E. of H is $1312 \mathrm{~kJ} / \mathrm{mol}$ |.
d) Find out the spectroscopic ground state term symbols for Cu^{2+} and Cr^{2+} ions.
2. a) A piece of wood sample is found to have activity 20% compared to that of a fresh wood. Find the age of the wood sample I given that the $t_{1 / 2}$ of ${ }^{14} \mathrm{C}$ is 5578 years 1 .
b) Why does ${ }^{235} \mathrm{U}$ undergo fission on capture of slow neutrons whereas ${ }^{238} \mathrm{U}$ requires fast neutrons for fission ?
c) What is spallation reaction ? How does it differ from nuclear fission?
d) Comment on the penetrating power and relative energy of the $3 p$ and $3 d$ orbitals with the help of the radial probability distribution curve.

UNIT - II

3. a) Calculate the electronegativity of As [given that $r_{\text {cov }}$ for As is $120 \mathrm{pm} \mathrm{]}$.
b) How do you account for the similarities in the properties of Zr and Hf ?
c) Define electron affinity. Explain the electron affinity values given below with reasons.

$$
\mathrm{C}(122): \mathrm{N}(203): \mathrm{O}(141) \mathrm{kJ} / \mathrm{mol} .
$$

d) Write the IUPAC names of the elements with atomic numbers 117 and 118.1
4. a) Calculate Z^{*} for a $3 p$ electron in $\mathrm{P}, \mathrm{S}, \mathrm{Cl}$ and Ar . Hence predict the relative size of the atoms.
b) How can you explain the noble like character of the post lanthanide elements like Pt and Au ?
c) How does electronegativity change with hybridisation and bond order ?

CEMAT - 11-IB

Answer any two questions, taking one from each Unit.

UNIT - I

5. a) Calculate the electron affinity of chlorine from the following data :

$$
\begin{aligned}
& \Delta H_{f}(\mathrm{LiCl})=-405.9 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{\text {sub }}(\mathrm{Li})=163.2 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H_{\text {diss }}\left(\mathrm{Cl}_{2}\right)=242.7 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{I E}(\mathrm{Li})=518.9 \mathrm{~kJ} / \mathrm{mol} \text { and } \\
& U_{\mathrm{LiCl}}=-841.2 \mathrm{~kJ} / \mathrm{mol} .
\end{aligned}
$$

b) Why does ZnO change colour to yellow when heated ?
c) Which of the following molecules have permanent dipole moment ?

$$
\mathrm{PCl}_{3}, \mathrm{BCl}_{3}, \mathrm{XeF}_{4} \text { and } \mathrm{SF}_{4}
$$

d) Why are the hydrolytic products of NCl_{3} and PCl_{3} different?
e) $\mathrm{NH}_{4} \mathrm{~F}$ crystallizes in ZnS structure though a NaCl structure is expected from the radius ratio value. Explain.
6. a) How do you calculate the lattice energy values for the ionic solids with unknown crystal structures?
b) Predict the shapes of the following ion and molecule from VSEPR theory. 1_{3}^{-}and $\mathrm{XeO}_{2} \mathrm{~F}_{2}$

Show an example where VSEPR theory fails to explain the shape.
c) Explain why the molecular formulae of nitrogen and oxygen are N_{2} and O_{2} respectively but those of phosphorus and sulphur are P_{4} and S_{8} respectively.
d) How can you account for the lower $m p$ of $\mathrm{AgCl}\left(455^{\circ} \mathrm{C}\right)$ than $\mathrm{KCl}\left(776^{\circ} \mathrm{C}\right)$?

UNIT - II

7. a) Why does SbF_{5} increase the acidity and conductivity of liquid HF but NaF reduces its acidity?
b) Why do the heavier transition metal ions prefer to bind with the S -donor ligands than the O-donor ligands?
c) Draw an acid-base neutralisation curve for the titration of a weak acid by a strong base and hence predict the choice of indicator.
8. a) Predict the pK_{1} values of the following oxo-acids using Pauling's rule :

HClO. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$.
Will the pK_{1} value of $\mathrm{H}_{3} \mathrm{PO}_{3}$ deviate from that of the expected value ? If so.
why?
b) The colour of the metal-ammonia solution is independent of the nature of the metal used. Explain.
c) Arrange the following in the increasing order of Lewis acidity :

$$
\begin{equation*}
\mathrm{SiF}_{4}, \mathrm{SiCl}_{4}, \mathrm{SiBr}_{4} \text { and } \mathrm{SiI}_{4} \tag{2}
\end{equation*}
$$

d) Find out the pH of a mixture containing $9 \mathrm{ml} 0.2(\mathrm{~N}) \mathrm{CH}_{3} \mathrm{COOH}$ and 191 ml 0.2 (N) CH $\mathrm{C}_{3} \mathrm{COONa}$.
$\left(K_{a}=1.8 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}\right)$

CEMAT - 11-0A

(Full Marks : 50)
Answer any two questions, taking one from each Unit.

UNIT - I

1. a) Show the canonical forms of the following carbocation and which has tl greater contribution towards the resonance hybrid.

$$
\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}=\mathrm{CH}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2} .
$$

b) Calculate the double bond equivalent (DBE) of $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{Cl}$.
c) Draw the orbital picture of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CHCl}$. Indicate the state hybridisation of each carbon atom.
d) Diethyl ether is less soluble than tetrahydrofuran in water. Explain.
e) Compare the dipole moments of ethyl chloride and vinyl chloride.
f) Explain which one of the following two molecules has higher basicity.

g) Compare the $C-N$ bond lengths (a vs a^{\prime}) and (b vs b^{\prime}) in the follow compounds :

2. a) Arrange the following compounds in order of increasing oKa values. Give reason.

b) State with reason whether the following species are aromatic, anti-aromatic or non-aromatic :

c) Write down the IUPAC name of the following compound :

d) Can you compare the stabilities of all the isomers having molecular formula

1) Show the HOMO of allyl free radical (Ground state configuration) and LUMO of 1,3 -butadiene (excited state).
g) Arrange the following in the increasing order of basicity and justify :

$$
\overline{\mathrm{O}} \mathrm{H} . \overline{\mathrm{O}} \mathrm{C}_{2} \mathrm{H}_{5} \cdot\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-} . \mathrm{CH}_{3} \mathrm{COO}^{-} .
$$

UNIT - II

3. a) Find out the symmetry elements $\left(\mathrm{C}_{n}, \sigma, i\right)$ present in the following molecules (any two) :ISTDO4I 3
i) CHCl_{3}
ii)

iii)

b) Draw all stereoisomers of $\mathrm{CH}_{3} \mathrm{CH}=\underset{\mathrm{Br}}{\mathrm{CHCH}} \mathrm{CH}=\mathrm{CHCH}_{3}$ and comment on their optical activity.
c) Assign R / S or E / Z descriptors to the following stereostructures as applicable :
i)

ii)

d) Draw the conformational energy diagram for rotation around $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond of meso-2. 3-butane diol with proper labelling.
e) Identify H_{A} and H_{B} in each of the following structures as homotopic, enantiotopic or diastereotopic.

4. a) Draw the energy profile diagram of a two-step exothermic reaction of which the activation energy of the first step is greater than the second step, but the second step is the rate determining step.
b) Compare the dipole moments of the diastereomers of
5. 2-dichloro-1.2-diphenyl ethane.

2
c) What is primary kinetic isotope effect ? Write the mechanism of oxidation of $\mathrm{Me}_{2} \mathrm{CHOH}$ with Cr (VI) oxide in glacial acetic acid. Cite a labelling experiment and its result to indicate which type of kinetic isotope effect is operative here.
d) Comment on the relative energy barriers for rotation across $\mathrm{C}-\mathrm{C}$ bond in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl} . \mathrm{Br}$ and I$)$.
e) Draw the Fischer projection formula of (2ㅛ. 3S)-2-bromo-3-hydroxy butanoic acid and represent it in Newman projection form.

CEMAT - 11-0B

Answer any two questions, taking one from each Unit.

UNIT - I

5. a) Give the products with the configurational descriptors ($\underline{R} / \underline{S}$) in the following reaction :
(\underline{R})-2-Bromopropanoic acid

$$
\begin{equation*}
\underset{\mathrm{Mg}_{2} \mathrm{O}}{\mathrm{Moist}} \downarrow \tag{3}
\end{equation*}
$$

b) Acetylene is less reactive towards bromine addition than ethylene. Explain. 2
c) Treatment of $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CHOH}-\mathrm{CH}_{3}$ with conc. HCl gives two same isomeric chlorides. What are the two products? Explain.
d) Predict the product(s) with mechanism indicating major/minor. and the stereochemistry wherever aplicable (any two): $2 \times 3=6$
i)

$\xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}$
ii)
cis-2-butene
$\xrightarrow[\text { moist } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}]{\mathrm{I}_{2} / \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Ag}}$
$\xrightarrow{\ominus} \xrightarrow{\mathrm{OEt}^{-} / \mathrm{EtOH}}$
6. a) Though conjugated dienes are more stable than the non-conjugated dienes. former dienes undergo addition reaction more rapidly than the latter. Explain.
b) What happens when an optically active α-phenyl ethanol is allowed to react with thionyl chloride (i) in absence of and (ii) in presence of pyridine? Explain with mechanism.
c) How would you synthesize $\mathrm{CH}_{3} \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}$ by adopting Williamson's synthesis?
d) Which mechanism $S_{N} 1$ or $S_{N} 2$ is favourable for reactions with each of the following substrates ? Explain.

e) Complete the following reaction :

f) Carry out the following conversion :

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}
$$

UNIT - II

7. a) What is ipso-substitution ? Explain with an example.
b) Free radical reaction between toluene and chlorine takes place at the side chain not at the nucleus. Explain.
c) What is meant by σ and π complexes in aromatic electrophilic substitution? Draw an energy diagram showing them in a specific reaction with mechanism.
d) Apply Corey-House method to synthesize compound A using two suitable substrates having four carbon and three carbon respectively. Give argument for your choice.

e) Compare the stabilities of the following radicals :
8. a) Give one example for each of the following :
i) Ylide
ii) Zwitterion
iii) Electrophilic radical
iv) Nucleophilic radical.
b) Predict the product(s) with plausible mechanism: $\quad 3 \times 2=6$
i)

ii)

iii)

c) $\quad \mathrm{Me}_{3} \mathrm{CH}$ on chlorination using Cl_{2} in diffused sunlight gives primary halide as major monosubstituted product while bromination by heating with Br_{2} produces tertiary halide as major. Justify this observation.
d) Arrange the following compounds in increasing order of reactivity towards nucleophilic substitution reaction.

