West Bengal State University
 B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 PART-III
 CHEMISTRY - Honours
 Paper- V

Duration : 4 Hours
Full Marks

Candidates are required to give their answers in their own words as far as practicab The figures in the margin indicate full marks.

GROUP - A

(Full Marks - 50)

Answer any three questions, taking one from each unit.

UNIT - I

1. a)
(i) A system consists of three energy states - a ground state $\left(E_{0}\right.$ first excited state ($\mathrm{E}_{1}=2 \mathrm{kT}$) and a second excited state ($\mathrm{E}_{2}=6 \mathrm{k} 7$ degeneracies of the energy states are respectively 1,3 and 2 . Fiir the molecular partition function.
(ii) Show that the relation connecting entropy S of a system wit partition function Q is given by : $S=N k_{B} \ln Q+\frac{E}{T}$
$E=$ internal energy of system
$\boldsymbol{k}_{B}=$ Boltzmann constant
$N=$ Number of molecules in the system
$T=$ Temperature of the system.
b) Mention the assumptions and approximations involved in studying collif properties of a dilute solution. Derive thermodynamically, using potentials, a relation between the elevation of boiling point of a dilute so and the molal concentration of the solute.
c) Write notes on any two of the following :
(i) Critical solution temperature
(ii) Adiabatic demagnetization
(iii) Abnormal colligative properties
(iv) Eutectic mixtures.
2. a)
(i) Derive the expressions for Pressure (P) and Enthalpy (H) in terms of partition function.
$2+2$
(ii) Entropy is a function of thermodynamic probability. How can one conclude that the function is logarithmic?
b) Derive Duhem - Margules equation stating clearly the assumptions. Show that if Raoult's law is applicable to one of the constituents of a binary liquid mixture, at all compositions, it must be equally applicable to the other constituent.
c) (i) Find out the osmotic pressure of a 0.001 M aqueous $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution at $27^{\circ} \mathrm{C}$.
(ii) Boiling point of acetone is $56.5^{\circ} \mathrm{C}$ and its latent heat of vaporization is $6920 \mathrm{cal} /$ mole. Hence, calculate the molal boiling point elevation constant of acetone.

UNIT - II

3. a) Solid ' A ' has a face centered cubic lattice with the length of the unit cube $a=2 \cdot 62 \AA$. Another solid ' B ' has a body centered cubic lattice with $a=2 \cdot 90 \AA$. Calculate the ratio of the densities of the two solids.
b) Explain the stability of colloid in the context of zeta potential. What do you mean by 'Gold number' and 'Tyndall effect'?
$2+1+1$
c) (i) Explain the action of surface active material from thermodynamic stand point.
(ii) Describe the viscometric method of determination of molecular mass of a polymer.
$2+2$
d) For $\mathrm{SO}_{2}(\mathrm{~g})$ at $0^{\circ} \mathrm{C}$ and 1 atm pressure the dielectric constant is 1.00993 . This gas has a permanent dipole moment of 1.63 debye. Assuming that SO_{2} behaves as an ideal gas, calculate per mole the orientation and the induced polarization.
4. a) State the assumptions involved in Einstein's theory of heat capacities of as Demonstrate the limitations of the theory through a plot of C_{v} vs T. Mention probable reasons and suggest the scope of modification.
b) A polymer sample contains equal masses of particles with molecular wei 10,000 and 20,000 respectively. Calculate the 'number average' and average' molecular weight of the polymer.
c) What is meant by polarizability of a molecule? How does molar polarizatio polar molecules vary with temperature?
d) (i) Lyophobic colloids are more sensitive to electrolytes than lyop colloids. Explain.
(ii) What is salting out ? How is it different from coagulation?

Unit - III

5. a) What do you understand by rotational constant of a diatomic molecule ? can it be determined?
b) (i). What is the essential condition for a molecule to be Raman active?
(ii) Which of the vibrational modes of CO_{2} are infrared active and whic them are Raman active? Why?
c) State Franck-Condon principle and illustrate with a suitable diagram.
d) Use a suitable example to explain the photostationary state.
e) In the photochemical combination of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ a quantum efficienc 1×10^{6} has been obtained with a wavelength of $4800 \AA$. How many mole HCl would be produced under these conditions per calorie of radiant en absorbed ?
6. a) Existence of zero-point energy in a vibrating molecule does not vio Heisenberg's uncertainty principle. Comment.
b) What is the difference between overtones and hot bands in the IR spectra?
c) Write down the principle involved in determining the A - A bond distance homonuclear molecule (A_{2}) by spectroscopic method.
d) A solution of a coloured compound of concentration $1.0 \times 10^{-4} \mathrm{M}$ has transmission in a cell of pathlength 1.0 cm at 450 nåm wavelength. Calcu the molar absorption coefficient (ε) of the substance. If the pathlength and concentration are both halved calculate the percentage transmission. Will value of ' ε ' change if light of wavelength 550 nm is used ?
e) Calculate the number of photons of wavelength (i) 350 nm , (ii) 70 nm that the same energy content of 1 K Cal .

Carry out the following transformations giving mechanism of the reactions :
(i)

(ii)

g) Outline the synthesis of fluorescein and write one of its uses.
8. a) Show the retrosynthesis of the following compounds by disconnection approa (any two) :
(i)

(ii)

(iii)

b) Illustrate the use of acyloin reaction for the synthesis of large rings. Does method require the high dilution technique ? Comment.
c) Write down the Skraup quinoline synthesis mentioning the role of differe constituents.
d) Compare the basicity of pyrrole and pyridine.
e) Predict the products with mechanism :

f) Outline the synthesis of phenobarbitol and give one use of it.
g) Write down the structure of Alizarin.

UNIT - II
9. a) Complete the following with proper explanation (any two) :
(i)

(ii)

b) What is sigmatropic reaction ? What type of $[1,3] \mathrm{H}$ shift do you expect when a reaction is carried out thermally ? Explain considering FMO theory.
$1+1+1$
c) Identify the product(s) in the following reactions with proper mechanism :

and

d) Comment on the optical activity of cis 1,2-di-methylcyclohexane.
e) Give an example of $\Pi^{2} s+\Pi^{2} s$ cycloaddition reaction with proper justification.
f) Draw all the conformations of 1-methyl-1-phenylcyclohexane. Which one is more stable and why?
10. a) Explain the following observations (any two): 3×2
(i) Cyclohexane cis-1,2-diol is cleaved by lead tetra-acetate about 22 times faster than its trans-isomer despite the fact that the dihedral angle between the $\mathrm{C}-\mathrm{OH}$ bonds is same in both the isomers.
(ii) Acetolysis of both cis-and trans-tosylates shown below give the same trans-diacetate.

(iii)

but

b) Predict the products in the following reactions (any two) :
(i)

(ii)

(iii)

c) What happens when the diastereomers of 2-aminocyclohexanol are se treated with $\mathrm{NaNO}_{2} / \mathrm{HCl}$?
d) Draw the preferred conformation of cis-and trans-1, 3-dimethylcyclo Comment on their optical activity.
e) Write down the symmetry elements present in the boat form of cyclohex

UNIT - III

11. a) Explain the following (any two):
(i) $\quad \alpha$-D-Glucose exhibits mutarotation when dissolved in water, but α-D-Glucoside does not.
(ii) Sucrose is non-reducting sugar
(iii) α-D-Galactose readily forms diacetonide with acetone/ H α-D-Glucose does only after isomerisation to the furanose form.
b) How would you convert the following (any two) ?
(i) D-glucose \longrightarrow D-fructose
(ii) Adenosine triphosphate \longrightarrow Adenosine
(iii) D-xylose \longrightarrow D-glucose.
c) Illustrate an application of 2, 4-dinitrofluorobenzene for the determina N -terminal amino acid residue of polypeptide. How would you justify its over the much less expensive 2,4-dinitrochlorobenzene?
d) Propose Strecker synthesis of methionine starting from 2-propenal. Sh appropriate reagents and reaction conditions.
12. a) Compare with proper justification the relative proportions of α-D-Glucos β-D-Glucose (i) in water and (ii) in anhydrous methanol.
b) Write down azalactone synthesis of phenylalanine.
c) What is co-enzyme? Give one example.
d) When aq. solution of an (S)-alanine is treated with ninhydrin, a purple cc produced. Show the sequence of reactions with mechanism involved.
e) Indicate the structural differences between nucleoside and nucleotide suitable example.
f) D-glucose exhibits mutarotation in the presence of 2-hydroxypyridine. Ex
