		SEMEST	ER-I	SEMESTER-I	_	Tutorial
	ing	Honours C	ourse	General Course	g ir ch	In hours
Month	No. of Teaching	MTMACOR01T Marks:50+25=75 Calculus and Geometry and Ordinary Differential Equation	MTMACOR02T Marks:50+25=75 Algebra	MTMGCOR01T Marks:50+25=75 Differential Calculus	Class teaching in hours of each	
July,2019	26	Unit 1: i)Leibintz Rule on diffn. ii)Point of Inflexion iii) Envelopes iv)Asymptote	Unit -1: i)Polar rep. of complex numbers, nth roots of unity, ii)De Moivre's theorem . iii) Theory of equations: Relation between roots and coefficients, Transformation of equation.	 i) Limit and Continuity (ε and δ definition), Types of discontinuities, ii)Differentiability of functions, iii)Successive differentiation, Leibnitz's theorem. 	Hons- 22 Gen- 16	HONS-4
August,2019	24	Unit 1: v)Curve tracing vi)L'Hospital's rule Unit- 2 i)Reduction Formulae ii)Arc length of different curves iii) Area of surface of revolution iv) Techniques of sketching of conics	Unit -1: iv)Descartes rule of signs, v)Cubic (Cardan's method) and biquadratic equations (Ferrari's method). vi)Inequality: The inequality involving AM≥GM≥HM, Cauchy-Schwartz inequality. Unit -2: i) Relation, Partition ii) Mapping	iv) Partial differentiation, Euler's theorem on homogeneous functions v)Tangents and Normals,	Hons- 22 Gen- 16	HONS-4 Graphical Demonstration (Teaching Aid) Plotting of graphs of function
September,2019	22	Unit-3 i)Reduction of canonical form ii)Polar Equation of conic iii)Sphere iv)Conicoids	Unit -2 : iii)Integer: Well-ordering property, Division algorithm, Divisibility and Euclidean algorithm. Congruence. iv)Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	vi) Curvature, vii)Asymptotes, viii)Singular points, ix)Tracing of curves. Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates.	Hons- 18 Gen- 12	Hons-4 Graphical Demonstration (Teaching Aid) Plottingthe graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.

October,2019	03	Unit-3 v)Plane sections of conicoids vi))Generating lines vii) Graphing of standard quadric surfaces	Unit -3: Linear Algebra: i) Systems of linear equations, row reduction and echelon forms	x) Rolle's theorem, xi)Mean Value theorems	Hons- 3	
Oct					Gen-2	
November,2019	24	Unit -4: i)Exact Differential equation, ii)Integrating factors iii)Linear equation iv)Bernoulli equations	Unit 4:, i) Vector equations, the matrix equation Ax=b, ii) Matrix inverse of a matrix, characterizations of invertible	xii)Taylor's theorem with Lagrange's and Cauchy's forms of remainder.	Hons- 20	Hons-4 Graphical Demonstration (Teaching Aid) Sketching parametric curves (Eg. Trochoid, cycloid,
Novem			matrices. iii) Rank of a matrix		Gen- 16	epicycloids, hypocycloid).
Decembr,2019	20	Graphical Demonstration (Teaching Aid). .i)Tracing of conics in Cartesian coordinates/polar coordinates. vi)Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates.	Unit 4: iv)Eigen values, Eigen Vectors and Characteristic Equation of a matrix. v) Cayley-Hamilton theorem and its use in finding the inverse of a matrix.	xii)Taylor's series, Maclaurin's series of sin x, $\cos x$, e^x , $\log(l+x)$, $(l+x)^n$ vxi)Maxima and Minima, xv) Indeterminate forms	Hons- 16	Hons-4 Graphical Demonstration (Teaching Aid). iv) Obtaining surface of revolution of curves.
Dece					Gen-6	
Mo	No.	SEMESTI Honours C		SEMESTER-II General Course	Cla SS	Tutorial In hours

		MTMACOR03T	MTMACOR04T	MTMGCOR02T		
		Marks:50+25=75	Marks:50+25=75	Marks:50+25=75		
		Real Analysis	Differential Equation and Vector	Differential Equation		
			Calculus	1		
		Unit-1: i) Review of Algebraic and Order	Unit-1 : i) Lipschitz condition and	i) First order exact differential equations. Integrating factors,	Hons-	
		Properties of \mathbb{R} , ε -neighbourhood of a	Picard's Theorem (Statement	rules to find an integrating	17	
20		point in \mathbb{R} . Idea of countable sets,	only).	factor.	-	Hons-5
,20	21	uncountable sets and unaccountability	ii) General solution of	ii) First order higher degree		
ary		of \mathbb{R} .	homogeneous equation of second	equations solvable for x, y, p.		
January'2020		ii)Bounded above sets, Bounded	order, principle of super position	Methods for solving higher-	~	
Ja		below sets, Bounded Sets, Unbounded	for homogeneous equation,	order differential equations.	Gen-	
		sets.	Wronskian: its properties and applications,		14	
			applications,			
		Unit-1:	Unit-1 :	iii) Basic theory of linear		
		iii) Suprema and Infima,	iii) Linear homogeneous and	differential equations,	Hons-	
		Completeness Property of \mathbb{R} and its	non-homogeneous equations of	Wronskian, and its properties.	16	
03	20	equivalent properties. iv) The Archimedean Property,	higher order with constant coefficients, Euler's equation.	iv) Solving a differential equation by reducing its order.		Hons-4
February,2020	20	Density of Rational (and Irrational)	Unit -2 :	v) Linear homogenous		П0IIS- 4
ury		numbers in \mathbb{R} , Intervals.	iv) Method of undetermined	equations with constant		
Lug		v) Limit points of a set, Isolated	coefficients, method of variation	coefficients,		
Feb		points, Open set, closed set. derived	of parameters.	vi) Linear non-homogenous	Gen-	
		set, Illustrations of Bolzano-		equations,	14	
		Weierstrass theorem for sets.		vii) The method of variation	11	
				of parameters,.		
		Unit-1	Unit-1 :	viii) The Cauchy-Euler		
March,20		:vi) compact sets in R, Heine-Borel	v) System of linear differential	equation, Simultaneous	Hons-	
rcf	24	Theorem.	equations, types of linear	differential equations, Total	20	
Ma		Unit-2 :	systems, differential operators,	differential equations.		Hons-4
Ι			an operator method for linear	ix)Order and degree of partial		

		i)Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem.	systems with constant coefficients.	differential equations, Concept of linear and non- linear partial differential equations.	Gen- 16	
April,2020	24	Unit-2 :ii) Subsequences, Divergence Criteria.MonotoneSubsequence Theorem (statementonly).iii)Bolzano Weierstrass Theorem forSequences.iv)Cauchysequence,Cauchy'sConvergence criterion.	Unit -2 :vi) Basic Theory of linearsystems in normal form,homogeneous linear systemswith constant coefficients.vii) Two Equations in twounknown functions.Unit-3 :i) Equilibrium points,Interpretation of the phase plane.	 x) Formation of first order partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method. 	Hons- 20 Gen- 16	Hons-4
May,2020	22	Unit-3: i) Infinite series, convergence and divergence of infinite series, Cauchy Criterion.	Unit-3 : ii) Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	xi) Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.	Hons- 18 Gen- 12	Hons-4
June,2020	24	Unit-3: ii) Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. iii)Alternating series, Leibniz test. Absolute and Conditional convergence.	Unit- 4 : i)Triple product, introduction to vector functions, operations with vector-valued functions ii) Limits and continuity of vector functions, differentiation and integration of vector functions.		Hons- 10 Gen-0	Hons-2

). of	SEMESTER-III	SEMESTER-III	lass	itori	MTMACOR07P	MTMSSEC01M (For both Hons
Z o z	ŽE	Honours Course	General Course	2 Q	JL 12	Numerical	and General)

		MTMACOR05T Marks:50+25=75 Theory of Real Functions	MTMACOR06T Marks:50+25=75 Group Theory–I	MTMACOR07T Marks:50(Th)+ 25(Prac) =75 Numerical Methods	MTMGCOR03T Marks:50+25=75 Real Analysis			MethodsLab(Marks : 25)List of practical(usingCprogramming)	Marks:25 C-Programming Language.
July,2019	26	Unit 1:Limits of functions (ε - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity.	Unit-1 : Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups.	Unit-1: Algorithms, Convergence, Errors: Relative, Absolute. Round off, Truncation. Methods based on interpolations, methods based on finite differences.	i)Finite and infinite sets, examples of countable and uncountable sets. Ii)Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points andstatement of Bolzano- Weierstrass theorem.	Gen-16 Hons-22	Hons-4	i)Calculate the sum 1/1 + 1/2 + 1/3 + 1/4 + + 1/N. ii)Enter 100 integers into an array and sort them in an ascending order.	Unit 1 : Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart
August,2019	24	Unit 1: Algebra of continuous functions. Continuous functions on an interval, intermediate	Unit-2: Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two	Unit-2 : Transcendental and Polynomial equations: Bisection method, Newton's method, Secant	 iii)Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem, monotone sequences and 	Hons-20	Hons-4	iii)Solution of transcendental and algebraic equations by a. Bisection method b. Newton Raphson method.	Unit2: Fundamentals of Programming: Built in Data Types: int, float, double, char; Constants and Variables; first program: printf(), scanf(), compilation etc., keywords, Arithmetic

	r				41			a Canant mathe 1	
		value theorem,	subgroups.	method,	their convergence			c. Secant method.	operators: precedence
		location of roots		Regulafalsi	(monotone			d. Regula Falsi	and associativity,
		theorem,		method, fixed	convergence theorem			method	Assignment Statements:
		preservation of		point iteration,	without proof).				post & pre
		intervals theorem.		Newton-Raphson					increment/decrement,
		Uniform		method. Rate of					logical operators: and, or,
		continuity, non-		convergence of					not.
		uniform		these methods.					
		continuity							
		criteria,							
		uniform							
		continuity							
		theorem.							
		Unit-2:							
		Differentiability							
		of a function at a							
		point and in an							
		interval,				.16			
		Caratheodory's				Gen-16			
		theorem.				Ū			
		Unit -2 Algebra	Unit-3 :	Unit 2 . Contorn	iv)Infinite series. Cauchy			iv)Solution of	Unit 3 : Statements:
6		of	Properties of	Unit -3 : System	convergence criterion for			system of linear	Relational operators, if-
501		differentiable	cyclic groups,	of linear	series, positive term			equations	else statement,
Ъ.	22	functions.	classification of	algebraic	series, geometric series,		Hons-4	a.LU	Iterative Statements: for
abe		Relative extrema,	subgroups of	equations:	comparison		suo	decomposition	loop, while loop and do-
September,2019		interior	cyclic groups,	Gaussian	test, convergence of p-	18	Ή	method	while loop; controlling
eb		extremum,	Cycle notation	Elimination and	series, Root test, Ratio	-SI		b. Gaussian	loop execution: break
\mathbf{v}		theorem. Rolle's	for permutations,	Gauss Jordan	test, alternating series,	Hons-18		elimination	and continue, nested
			pormanarions,	methods. Gauss	, and series,	F			continue, nosteu

		theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value	properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem	Jacobi method, Gauss Seidel method and their convergence analysis, LU Decomposition.	Leibnitz's test(Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.			method c. Gauss-Jacobi method d. Gauss-Seidel method	loop.
		theorem to inequalities and approximation of polynomials.	and consequences including Fermat's Little theorem.			Gen-14			
6	03	Unit-3: Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder,		Unit-4: Interpolation: Lagrange and Newton's methods, Error	v) Sequences of functions.	Hons-3		v) Interpolation a.Lagrange Interpolation b.Newton Interpolation	Unit 4 : Arrays: Definition & requirement, declaration & initialization, indexing, one dimensional array: finding maximum,
October,2019		Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema.		bounds, Finite difference operators. Gregory forward and backward difference interpolations. Numerical differentiation.		Gen-3			minimum, simple sorting and searching.
November,2019	24	Unit-3 : Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, ln(1 +	Unit-4: External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem	Unit – 5: Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd	vi)Series of functions, Point-wise and uniform convergence. Mn-test, M-test, Statements of the results about uniform convergence and	Hons-20	Hons-4	vi)Numerical Integration a. Trapezoidal Rule b. Simpson's one third rule c. Weddle's Rule	Unit5:Multi-dimensionalarrays:MatrixManipulations(Addition,Multiplication,Transpose)ArraysPointers,Memoryllocationand

	x), 1/ax+b and (1 +x)n. Application o Taylor's theoren to inequalities	groups.	rule, Simpsons 3/8th rule, Weddle's rule, Boole's rule. Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature	integrability and differentiability of functions.	6		d. Gauss Quadrature vii)Method of finding Eigen- value by Power method viii)Fitting a Polynomial Function	deallocation: <i>malloc()</i> and <i>free()</i> functions
			formula. The algebraic eigen-value problem: Power method.		Gen-16			
Decembr,2019	20	Unit-5: Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third	Unit – 6: Ordinary Differential Equations: The method of successive approximations, Euler's method, the modified Euler method,	vii)Power series and radius of convergence.	Hons-14	Hons-2	ix)Solution of ordinary differential equations a. Euler method b. Modified Euler method c. Runge Kutta method	Unit6 : Functions: Why?, How to declare, define and invoke a function, Variables' scope, local& global variables and function parameters, Pointers, arrays as function parameters, <i>return</i> statement, Header

			isomorphism theorems	Runge-Kutta methods of orders two and four.		Gen-08		files and their role. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/multiplication etc.
Month	No. of Teaching days available	MTMACOR0 8T Marks:50+25= 75 Riemann Integration and Series of Functions	SEMESTER-IV Honours Course MTMACOR09T Marks:50+25=75 Multivariate Calculus	MTMACOR10T Marks:50(Th)+ 25(Prac) =75 Ring Theory and Linear Algebra I	SEMESTER-IV General Course MTMGCOR04T Marks:50+25=75 Algebra		Class taabias in haus af Tutorial In hours	MTMSSEC02M (For both Hons and Gen) Marks:25 Logic and Sets
January'2020	21	Unit-1Riemannintegration:inequalitiesofupperandlowersums,Darbauxintegration,Darbauxtheorem,	Unit-1 : Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation,	Unit1:Definitionandexamplesofrings,propertiesofrings,subrings,integraldomainsandfields,characteristic ofaring.Ideal,	Equivalence relations partitions, Function Composition of function Invertible functions, One to correspondence and cardina of a set. Definition examples of groups, exam of abelian and non-abelian groups, the group Zn integers under addition mod	one ality and ples of	Hons-4	Unit 1 : Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators.

	D:	1			1		
	Riemann	total	ideal generated				
	conditions of	differentiability	by a subset of a	under			
	integrability,	and	ring, factor rings,	multiplication modulo n.	1		
	Riemann sum	differentiability,	operations on				
	and definition	sufficient	ideals, prime and				
	of Riemann	condition for	maximal ideals.				
	integral	differentiability.					
	through	Chain					
	Riemann	rule for one and					
	sums,	two independent					
	equivalence of	parameters,.					
	two	-					
	Definitions.				1		
	Riemann						
	integrability of						
	monotone and						
	continuous				1		
	functions,				5		
	Properties of				C		
	the Riemann						
	integral;						
	definition and						
	integrability of						
	piecewise						
	continuous and						
	monotone						
	functions.						
	Intermediate						
	Value theorem						
	for Integrals,						
	Fundamental						
	theorem of						
	Integral				1		
	Calculus.						
	Unit-2 :	Unit-	Unit 2 : Ring	Cyclic groups from number			Unit-1: Propositional
20	Improper	1:Directional	homomorphisms,	systems, complex roots of	16	4	equivalence: Logical
202	integrals,	derivatives, the	properties of ring	unity, circle group, the general	Hone 1	Hons-4	equivalences. Predicates
Februar y,2020	Convergence	gradient,	homomorphisms.	linear group $GLn(n,R)$,	L O	Н	and quantifiers:
	contengence	Bradiona,	inomorphisms.	Broup CER(II,IV),			quantifiers.

	20	of Beta and	maximal and	Isomorphism	Groupsof symmetries of (i) an			Introduction, Quantifiers,
		Gamma	normal	theorems I, II and	isosceles triangle,			Binding variables and
		functions.	property of	III, field of	(ii)anequilateraltriangle,(iii) a			Negations.
			gradient, tangent	quotients.	rectangle, and (iv) a square.			_
			planes, Extrema					
			of functions of			-		
			two variables,			ş		
			method of			ζ		
			Lagrange					
			multipliers,					
			constrained					
			optimization					
			problems.					
		Unit-3 :	Unit-2 : Double	Unit 3 : Vector	The permutation group Sym			Unit 2 : Sets, subsets, Set
	24	Pointwise and	integration over	spaces,	(n), Group of quaternions.			operations and the laws
0	24	uniform	rectangular	subspaces,	Subgroups, cyclic subgroups,			of set theory and Venn
202		convergence of	region, double	algebra of	the concept of a subgroup	e	4	diagrams. Examples of
March,2020		sequence of	integration over	subspaces,	generated by a subset and the		Hons-4	finite and infinite
arc		functions.	non-rectangular	quotient spaces, linear	commutator		Η̈́	sets. Finite sets and counting principle.
Μ		Theorems on continuity,	region, Double	combination of	subgroup of group, examples of			e 1 1
		derivability	integrals in polar co-ordinates,	vectors, linear	subgroups including the center of a group. Cosets, Index of			Empty set, properties of empty set. Standard set
		and	Triple integrals,	span,	subgroup, Lagrange's theorem,			operations. Classes of
		and	imple integrais,	span,	subgroup, Lagrange's meorem,		1	operations. Classes of

		integrability of	Tripla internal	linear	order of an element, Normal	1		sets. Power set of a set.
			Triple integral over a	independence,				sets. Power set of a set.
				1 7	0 1			
		function of a	parallelepiped	basis and	examples, and			
		sequence of	and solid regions.	dimension,	characterizations, Quotient			
		functions.	Volume by	dimension of	groups.			
		Series of	triple integrals,	subspaces.				
		functions,	cylindrical and					
		Theorems on	spherical					
		the continuity	coordinates.					
		and	Change of					
		derivability of	variables in					
		the sum	double integrals					
		function of a	and triple					
		series of	integrals.			16		
		functions;				5		
		Cauchy				ζ		
		criterion for						
		uniform						
		convergence						
		and						
		Weierstrass						
		M-Test.						
		integration of						
		power series;						
		Abel's						
		Theorem;						
		Weierstrass						
		Approximation						
		Theorem.						
		Unit 4:	Unit-3 :	TT	Definition and examples of			Unit 3 : Difference and
8		Fourier series:	Definition of	Unit 4 :	rings, examples of			Symmetric difference of
April,2020		Definition of	vector field,	Introduction to	commutative and non-	6	H0ns-4	two sets. Set identities,
il,		Fourier	divergence and	linear	commutative rings: rings from		Ons	Generalized union and
Idv	24	coefficients	curl. Line	transformations,	number systems, Zn the ring of	1 T	Ĥ	intersections.
A		and series,	integrals,	Subspaces,	integers modulo n, ring of real			Relation: Product set.
		,	<i>U</i> ,	dimension of				

		Reimann	Applications of	subspaces, null	quaternions, rings of matrices,			Composition of relations,
		Lebesgue	line integrals:	space, range,	polynomial			Types of relations,
		lemma,	Mass and	rank and	rings, and rings of continuous			Partitions,
		Bessel's	Work.	nullity of a linear	functions.			i urutions,
		inequality,	Fundamental	transformation.				
		Parseval's	theorem for line					
		identity,	integrals,			9		
		Dirichlet's	conservative			4		
		condition.	vector fields,			ď		
		Examples of	independence of					
		Fourier	path.					
		expansions and	-					
		summation						
		results for						
		series.						
		Unit – 5:	Unit-4 : Green's		Subrings and ideals, Integral			Unit-3:Equivalence
		Power series,	theorem, surface	matrix	domains and fields, examples	10		Relations with example
		radius of	integrals,	representation of	of	9		of congruence modulo
	22	convergence,	integrals over	a linear	fields: Zp, Q, R, and C. Field of	П		relation. Partial ordering
		Cauchy	parametrically	transformation,	rational functions.			relations, n- ary relations.
		Hadamard	defined surfaces.	algebra of linear				
		Theorem.	Stoke's theorem,	transformations.			S-4	
		Differentiation	The Divergence	Isomorphisms.			Hons-4	
		and integration	theorem.	Isomorphism		V	μ.	
0		of power series; Abel's		theorems, invertibility and		-		
202		Theorem;		isomorphisms,		č		
May,2020		Weierstrass		change of				
Ü		Approximation		coordinate				
		Theorem.		matrix.				
<u> </u>				mau IA,				
0	24					044		
202	21					Ĺ	- SI	
ne,							Hons-	
June,2020							Ŧ	
-								
						5		

HONOURS	NUMBER OF LECTURES	JULY-SEPTEMBER	OCTOBER -DECEMBER	JANUARY-MARCH		APRIL-JUNE
HONOUKS	NUMBER OF LECTURES	JULI-SEF I EMDER	OCTOBER -DECEMBER	JANUAR I-MARCH		AFRIL-JUNE
PART III PAPER V	115	GROUP A REAL ANALYSIS III NO. OF CLASSES= 37	GROUP A REAL ANALYSIS III NO. OF CLASSES=43	GROUP A REAL ANALYSIS III NO. OF CLASSES=15		
		GROUP B METRIC SPACE NO. OF CLASSES=15	GROUP C COMPLEX ANALYSIS NO. OF CLASSES=15			
PART III PAPER VI	125	GROUP A PROBABILITY NO. OF CLASSES= 20	GROUP A PROBABILITY NO. OF CLASSES= 10		ATION	EXAMINATION
		GROUP A STATISTICS NO. OF CLASSES=15	GROUP A STATISTICS NO. OF CLASSES=20		EXAMINATION	
		GROUP B NUMERICAL ANALYSIS NO. OF CLASSES=30	GROUP B NUMERICAL ANALYSIS NO. OF CLASSES=10	GROUP B COMPUTER PROG. NO. OF CLASSES=20	TEST]	ITY FINAL
PART III PAPER VII	122	GROUP A VECTOR ANALYSIS NO. OF CLASSES=10	GROUP CD HYDROSTATICS NO. OF CLASSES=25	GROUP CD HYDROSTATICS NO. OF CLASSES=10		UNIVERSITY
		GROUP B ANALYTICAL STATICS NO. OF CLASSES=23		GROUP B ANALYTICAL STATICS NO. OF CLASSES=19		
		GROUP C RIGID DYNAMICS NO. OF CLASSES=15	GROUP C RIGID DYNAMICS NO. OF CLASSES=10	GROUP C RIGID DYNAMICS NO. OF CLASSES=10		

. DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS

HONOURS	NUMBER OF	JULY-SEPTEMBER	OCTOBER -	JANUARY-MARCH		APRIL-
	LECTURES		DECEMBER		EST	JUNE
					T va	

PART III PAPER VIIIA	65	GROUP A LINEAR ALGEBRA NO. OF CLASSES= 13	GROUP A MODERN ALGEBRA NO. OF CLASSES= 10		AMINATION
		GROUP A BOOLEAN ALGEBRA NO. OF CLASSES=10		GROUP C TENSOR CALCULUS NO. OF CLASSES= 17	FINAL EXAMIN
		GROUP B DIFFERENTIAL EQN. II NO. OF CLASSES= 15			X
PART III PAPER VIIIB PRACTICAL	50	NUMERICAL ANALYSIS NO. OF CLASSES= 5	NUMERICAL ANALYSIS NO. OF CLASSES= 20	STATISTICS NO. OF CLASSES= 25	UNIVERSIT

GENERAL	NUMBER OF LECTURES	JULY-SEPTEMBER	OCTOBER -DECEMBER	JANUARY-MARCH	L
PART -III PAPER -IV	90	GROUP A ELEMENTS OF COMPUTER SCIENCE NO. OF CLASSES= 14	GROUP A ELEMENTS OF COMPUTER SCIENCE NO. OF CLASSES= 10	GROUP A ELEMENTS OF COMPUTER SCIENCE NO. OF CLASSES= 12	SITY FINA
ANY ONE OF GR A, GR B, GR C.		GROUP B A COURSE OF CALCULUS NO. OF CLASSES= 14 GROUP C	GROUP B A COURSE OF CALCULUS NO. OF CLASSES= 10 GROUP C	GROUP B A COURSE OF CALCULUS NO. OF CLASSES= 12 GROUP C	UNIVER
		DISCRETE MATHEMATICS NO. OF CLASSES= 14	DISCRETE MATHEMATICS NO. OF CLASSES= 10	DISCRETE MATHEMATICS NO. OF CLASSES= 12	