DEPARTMENT OF PHYSICS (Honours)

HONOURS (CBCS Syllabus)	NUMBER OF LECTURES	JULY-SEPTEMBER 7 weeks	OCTOBER –DECEMBER 5 weeks	HONOURS (CBCS Syllabus)	NUMBER OF LECTURES	JANUARY-MARCH 5.5 weeks	APRIL-JUNE 7.5 weeks
Semester-I	THEORY 12 weeks	MATHEMATICAL PHYSICS – I Calculus, Vector Calculus	MATHEMATICAL PHYSICS – I Calculus, Vector Calculus, Probability	Semester-II C -3	THEORY 13 weeks	ELECTRICITY AND MAGNETISM	ELECTRICITY AND MAGNETISM
C-1	Credit: 4	NO. OF CLASSES= 28	NO. OF CLASSES= 20		Credit: 4	NO. OF CLASSES= 22	NO. OF CLASSES= 30
Semester –I C-2	THEORY 12 weeks	MECHANICS	MECHANICS	Semester-II	THEORY 13 weeks	WAVES AND OPTICS	WAVES AND OPTICS
	Credit: 4	NO. OF CLASSES=28	NO. OF CLASSES=20	C -4	Credit: 4	NO. OF CLASSES= 22	NO. OF CLASSES= 30
Semester –I P-I	PRACTICAL Credit:2	MATHEMETICAL PHYSICS LAB using PYTHON NO. OF. CLASSES= 28 (subject to the arrival of new computer with given specifications)	MATHEMETICAL PHYSICS LAB using PYTHON NO. OF. CLASSES= 20 (subject to the arrival of new computer with given specifications)	Semester –II P-3	PRACTICAL 13 weeks Credit: 2	 To determine an unknown Low Resistance using Carey Foster's Bridge. To verify the Thevenin and Norton theorems. To verify the Superposition and Maximum power transfer theorems. To determine self-inductance of a coil by Anderson's bridge. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. 	 6.To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. 7.To study the characteristics of a series RC Circuit. 8.To determine an unknown Low Resistance using Potentiometer. 9.To determine the resistance of a galvanometer using Thomson's method. (subject to arrival of the instrument) 10.Measurement of field strength B and its variation in a solenoid (determine dB/dx) (subject to arrival of the instrument)

							To study Lissajous Figures to derermine the phase difference between two harmonic oscillatiions.
		 YOUNG'S MODULUS MOMENT OF INERTIA COEFFICIENT OF VISCOSITY MODULUS OF RIGIDITY 	8. To determine the elastic Constants of a wire by Searle's method			To determine the frequency of an electric tuning fork by Melde's experiment and verify $\lambda 2$ –T law. (Subject to arrival of the instrument)	8. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge- shaped Film. (Subject to arrival of theInstrument)
		5. TO STUDY RANDOM ERROR	9. To determine the value of g using Bar Pendulum.			2. To determine refractive index of the Material of a prism using sodium source.	9. Familiarization with: Schuster`s focusing; determination of angle of
Semester –I P-II	PRACTICAL Credit: 2	 6. TO DETERMINE 'g'AND VELOCITY OF A FREELY FALLING BODY BY DIGITAL TIME TECHNIQUE 7. TO DETERMINE HEIGHT OF A BUILDING USING SEXTANT 	 10. To determine the value of g using Kater's Pendulum 11. To study the Motion of Spring and calculate, (a) Spring constant, (b) g and (c) Modulus of rigidity. 	Semester –I P-4	PRACTICAL 13 weeks Credit: 2	 To determine the dispersive power and Cauchy constants of the material of a prism using mercury source. (subject to the arrival of Hg source) To determine wavelength of sodium light using Fresnel Biprism. To determine wavelength of sodium light using Newton's Rings. 	 10. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating. (subject to arrival of the Hg. source) 11.To investigate the motion of coupled oscillators.
		NO. OF CLASSES=28	NO. OF CLASSES=20			6. To determine dispersive power and resolving power of a plane diffraction grating. NO. OF CLASSES = 22	(Subject to arrival of theInstrument) 12.To determine the wavelength of sodium source using Michelson's interferometer. (Subject to arrival of theInstrument)
							NO. OF. CLASSES = 30

Semester-III C -5	THEORY 12 weeks Credit: 4	Mathematical Physics II Fourier Series, Frobenues Methods and Special functions No. of Classes:28 (Subject to the arrival of New computers)	Mathematical Physics II Some Special integrals, Variational Calculus in Physics, Analytical Dynamics, Partial Differential equations No. of Classes:20	Semester-IV C -8	THEORY 13 weeks Credit: 4	Mathematical Physics III Complex analysis, Integral transform No. of Classes:22 (Subject to the arrival of New	Mathematical Physics III Boundary value problems, matrices, Eigen value and Eigen vectors No. of Classes:30
Semester-III C -6	THEORY 12 weeks Credit: 4	Thermal Physics Introduction to thermodynamics, Thermodynamic potentials No. of Classes:28	Thermal Physics Thermodynamic potentials, Kinetic theory of gases No. of Classes:20	Semester-IV C -9	THEORY 13 weeks Credit: 4	Elements of Modern Physics Relativistic dynamics, Collection of identical entities No. of Classes:22	Elements of Modern Physics Emergence of Quantum Mechanics, Lasers, Nuclear Physics No. of Classes:30
Semester-III C -7	THEORY 12 weeks Credit: 4	Digital Systems and Applications Introduction,Integrated Circiuts, Digital Circuits, Arithmatic circuits, Data processing circuits No. of Classes:2	Digital Systems and Applications Sequential circuits, Timers, Registers,Counters, Computer Organization No. of Classes:20	Semester-IV C -10	THEORY 13 weeks Credit: 4	Analog Systems and Applications History of the development of Electronics,Semiconductor diodes, Two terminal devices, BJT No. of Classes:22	Analog Systems and Applications FET, Amplifiers, Oscillators, OPAMP. Application of OPAMP, Conversion No. of Classes:30
Semester-III Skilled Enhancement Course – I T2	Theory + lab (Mixed) 12 weeks Credit: 2	Computational Physics Introduction, Scientific programming, Control Statements No of Classes:14	Computational Physics Programming No. of Classes:10	Semester-IV Skilled Enhancement Course – II T4	Theory + lab (Mixed) 13 weeks Credit: 2	Basic Instrumentation Skills Basic of Instruments, Electronic Voltmeter, Cathode Ray Oscilloscope, Signal . generators and analysis instruments No. of Classes:12	Basic Instrumentation Skills Impedance bridges and Q meters. Digital Instruments, Digital multimeters No. of Classes:16
Semester III P5	Practical Credit: 2	Mathematical Physics II Lab General topics, Sorting, statistical Calculation, Interpolation, Numerical Differentiation No. of Classes: 28	Mathematical Physics II Lab Numerical integration, Integration by Stochastic method,Solution of ODE first order differential equation No. of Classes: 20	Semester IV P8	Practical Credit:2	Mathematical Physics III Lab ODE initial value problem, Solution of Linear System of equations,Inverse of a matrix, Orthogonalization method,Eigenvalue calculation,Eigen Vectors No. of Classes: 22	Mathematical Physics III Lab Boundary value problems, Newton Raphson method, Integral transform, Dirac Delta function, Introduction of OCTAVE and its use No. of Classes: 32

			Thermal Physics Lab				
Semester III P6	Practical Credit: 2	Thermal Physics Lab Stefan's law Thermal Conductivity of Bad conductor by Lee's method Temperature coefficient of resistance of PRT using constant current source (subject to the arrival of the instrument) To study thermo emf of a thermocouple To calibrate a thermocouple to measure temperature in a specified range using potentiometer No. of Classes: 28 (subject to the arrival of the Instrument) 	 6.To calibrate a thermocouple to measure temperature in a specified range using OPAMP (subject to the arrival of the instrument) 7.Measuring Unknown temperature using Diode Sensor 8.To determine mechanical equivalent of heat (subject to the arrival of the Instrument) 9. Coefficient of thermal conductivity by Searle's apparatus (subject to the arrival of the Instrument) 10. Coefficient of thermal conductivity by Angstorm's method No. of Classes: 20 (subject to the arrival of the Instrument) 	Semester IV P9	Practical Credit:2	Elements of Modern Physics lab Wavelenth of Hα emission of Hydrogen	Elements of Modern Physics lab 8. Planck's Constant using blackbody radiation and photo detector 9. Photoelectric Effect 10. Planck's constant using 4 LEDs of different colours 11. Ionization potential of mercury 12. Millican's Oil drop experiment 13. Wavelengt oflaser source using diffraction of single slit No. of Clases: 30 (subject to the arrival of the instruments)
Semester III P7	Practical Credit:2	Digital System and Applications lab 1. Use of CRO 2. Use of Multimeter 3. NOT gate using transistor 4. Use of Universal gate 5. For a given truth table find the	Digital System and Applications lab 6.Different types of Adders 7 FlipFlop 8. Astable Multivibrator and Monostable Multivibrator using 555 timer 9. Subtractor 10. JK Master Slave flipflops 11. Counters	Semester IV P10	Practical Credit: 2	 Analog Systems and Applications lab 1. I-V characteristics of PN junction diode and Light emitting diode using both votage and current source 2. To study Zener diode 3. V-I and power curves of Solar Cell 	Analog Systems and Applications lab 10. To add DC voltage using OPAMP in inverting and in noninverting mode 11. OPAP as integrator and

		equation and develop the circuit No. of Classes: 28	12. Shift Registors No. of Classes: 20			 4. Characteristics of BJT in CE configuration 5. To Study RC coupled Oscillator 6. Inverting, Noninvering and buffer amplifier using OPAMP 7. Wien bridge oscillator 8. To deign a circuit to simulate 1st and 2nd order differential equation 9. To study inverting and non inverting amplifier using OPAMP and study its frequency response No. of Classes: 22 	differentiator 12. To Study CE transistor amplifier 13. Various biasing configuration of BJT for normal Class A operation 14. To study Phase shift Oscillator and Colpitt's Oscillator 15. To design DAC and ADC 16. Precision differential amplifier 17. To Study zero crossing detector and comparator 18. To study Schmitt trigger and associated circuits No. of Classes:30
Semester V C11	THEORY 12 weeks Credit: 4	Quantum Mechanics and Applications Basic formalism Schrodinger Equation Bound State in an arbitrary potential Total Classes: 28	Quantum Mechanics and Applications Hydrogenlike atoms Atomic Physics Total Classes: 20	Semester VI C13	THEORY 13 weeks Credit: 4	Electromagnetic Theory Maxwell's Equations Wave Propagation E.M wave in bounded media Total Classes: 22	Electromagnetic Theory Polarization of E.M wave Wave guide Optical Fibres Total Classes: 30

Semester V C12	THEORY 12 weeks Credit: 4	Solid State Physics Crystal Structure Lattice Dynamics Magnetic and Dielectric properties of matter Total Classes: 28	Solid State Physics Ferroelectric Properties Drude's theory Band Theory Superconductivity Total Classes: 20	Semester VI C14	THEORY 13 weeks Credit: 4	Statistical Mechanics Classical statistical Mechanics Statistical Equilibrium Blackbody Radiation Total Classes: 22	Statistical Mechanics System of Identical Particles B.E. Statistics F.D. Statistics Total Classes: 30
Semester V P11	Practical 12 weeks Credit: 2	Quantum Mechanics and Applications Lab 1. To Solve the s wave Schrodinger equation 2. To solve the s wave radial Schrodinger equation	Quantum Mechanics and Applications Lab 3. To solve Schrodinger equation for anharmonic potential 4. To solvethe s wave radial Schrodinder equation for hydrogen molecule	Semester VI P13	Practical 13 weeks Credit: 2	Electromagnetic Lab 1. Verification of law of malus 2. Specific rotation 3. Velocity and wavelength of ultrasonic wave 4. Fresnel Formula 5. V-I characteristics of PN diode	Electromagnetic Lab 6. R.I by Gaussian Eyepiece 7. R.I by Wollaston's air film 8. Babinet's compensator 9. Dipole antenna 10. Stefan's constant
Semester V P12	Practical 12 weeks Credit: 2	 Solid State Physics Lab Coupling coefficient Dielectric constant Characteristic of ferroelectric crystal BH curve of iron 	Solid State Physics Lab 5. Resistivity of a semiconductor 6. Hall Coefficient 7. Susceptibility 8. Complex dielectric Constant	Semester VI P14	Practical 13 weeks Credit: 2	Statistical Mechanics Lab 1. Computational analysis of the behavior of a collection of particles in a box 2. Computation of the partition function	Statistical Mechanics Lab 3. To p plot Plank's law and comparison with Rayleigh Jeans Law 4. To plot specific heat of solid according to different laws 5. To plot different distribution laws

Semester –V DSE T1	Theory I 12 weeks Credit 4	Advanced Mathematical Methods-I No. of Classes: 35 Laplace Transform Linear Vector space	Advanced Mathematical Methods-I No. of Classes: 25 Cartesian Tensors General Tensors	Semester –VI DSE T2	Theory I 13 weeks Credit 6	Advanced Mathematical Methods-II No. of Classes: 27 Partial Differential Equation Group Theory	Advanced Mathematical Methods-II No. of Classes: 37 Advanced Probability Theory
Semester –V DSE T3	Theory + Assignment 12 weeks Credit: 6	Advanced Dynamics No. of Classes: 35 Lagrangian and Hamiltonian Dynamics Rigid Body Mechanics Small Amplitude Oscillations	Advanced Dynamics No. of Classes: 25 Dynamical Systems Fluid Dynamics	Semester-VI DSE T6	Theory + Assignment 13 weeks Credit 6	Astronomy and Astro Physics No. of Classes:27 Astronomical Scales Astronomical techniques Physics Principles	Astronomy and Astro Physics No. of Classes:37 The Sun and Solar family Galaxies Large scale structure and Expanding Universe
Semester-V DSE T4	Theory + Assignment 12 weeks Credit: 6	Nuclear and Particle Physics No. of Classes: 35 Properties of Nuclei Nuclear Models Radioactive Decay Nuclear Reactors Study of Nuclear Radiation with matter	Nuclear and Particle Physics No. of Classes:25 Particle Physics Particle Accelerators Nuclear Detectors	Semester-VI DSE T11	Theory 13 weeks Credit 4	Communication Electronics No. of Classes:27 Electronic Comunication Analog Pulse Modulation Digital Pulse Modulation	Communication Electronics No. of Classes:37 Introduction to Communication and Navigation System Mobile telephony System
Semester-V DSE P1	Theory I 12 weeks Credit 2	Advanced Mathematical Methods-I Lab No. of Classes: 35 1.Linear Algebra 2.Orthogonal polynomials as eigen functions of Hermitian differential operators. 3. Determination Of the principal	Advanced Mathematical Methods-I Lab No. of Classes: 25 5. Lagrangian formulation in Classical Mechanics with constraints. 6. Study of geodesics in Euclidean and other spaces (surface of a sphere, etc). 7. Estimation of ground	Semester-VI DSE P11	Practical 13 weeks Credit 2	Communication Electronics Lab No. of Classes:27 1. To design an Amplitude Modulator using Transistor 2. To study envelope detector for demodulation of AM signal 3. To study FM –	Communication Electronics Lab No. of Classes:36 6. To study Time Division Multiplexing (TDM) 7. To study Pulse Amplitude Modulation (PAM) 8. To study Pulse

axes of moment	state energy and wave	4. Generator and	Width
of inertia	function of a quantum	Detector circuit	Modulation
through	system.		(PWM)
diagonalization.		5. To study AM	9. To study Pulse
		Transmitter	Position
4. Vector space		and	Modulation
of wave		To study FM	(PPM)
functions in		Transmitter	10. To study ASK,
Quantum		and Receiver	PSK and FSK
Mechanics:			modulators
Position and			
momentum			
differential			
operators and			
their commutator			
wave functions			
for stationary			
states as			
eigenfunctions			
of Hermitian			
differential			
operator.			

DEPARTMENT OF PHYSICS (GENERAL)

		JULY-SEPTEMBER 7 weeks	OCTOBER –DECEMBER 5 weeks		2) (P2)	JANUARY-MARCH	APRIL-JUNE 7.5 weeks
Semester I	Theory Mechanics T1 Credit: 4	Particle Dynamics Special theory of Relativity Mathematical methods Elasticity	Particle Dynamics Special theory of Relativity Oscillations Gravitation	Semester II	Theory ctricity and Magnetism (T ricity and Magnetism Lab (redit: 4	Vector Analysis Electrostatics Electromegnetic Induction	Linear Network Maxwells Equations Wave Propagation Magnetic Induction
		No. of classes = 28	No. of classes = 20		Elect	NO. OF CLASS = 30	NO. OF CLASSES= 22

				S1.To determine an unknown Semester II Practical Credit: 2 Carey Foster's Bridge.	 To determine an unknown Low Resistance using Carey Foster's Bridge. To verify the 	6.To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q.
PR M Semester I	ACTICAL Mechanics Lab P1 Credit: 2	1Modulus of rigidity 2.Moment of Inertia 3.Coefficient of Viscosity 4.Young's Modulus 5.To study the random error in observations of time period of some oscillation using chronometer.	 6. To determine the height of a building using a Sextant. 7. To determine the elastic Constants of a wire by Searle's method. 8. To determine the value of g using Bar Pendulum. 9. To determine the value of g using Kater's Pendulum. 10. To study the Motion of Spring and calculate, (a) Spring constant, (b) g and (c) Modulus of rigidity NO. OF CLASSES=20 	 2. To verify the Thevenin and Norton theorems. 3. To verify the Superposition and Maximum power transfer theorems. 4. To determine self-inductance of a coil by Anderson's bridge. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 5. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance 	 2. To verify the Thevenin and Norton theorems. 3. To verify the Superposition and Maximum power transfer theorems. 4. To determine self-inductance of a coil by Anderson's bridge. 5. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance 	 7. To study the characteristics of a series RC Circuit. 8. To determine an unknown Low Resistance using Potentiometer. 9. To determine the resistance of a galvanometer using Thomson's method. 10. Measurement of field strength B and its variation in a solenoid (determine dB/dx) NO OF CLASS

				, (c) Quality factor Q, and (d) Band width. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) No. of Classes = 24		, (c) Quality factor Q, and (d) Band width. No. of Classes = 22	= 30
Semester III	THEORY Credit: 4 T3	Thermal Physics and Statistical Mechanics Laws of Thermodynamics, Thermodynamic potentials, Kinetic theory of gases No. of Classes: 28	Thermal Physics and Statistical Mechanics Theory of Radiation Statistical Mechanics No. of Classes: 20	Semester IV	THEORY Credit: 4 T4	Waves and Optics Superposition of two collinear harmonic oscillations, Superposition of two perpendicular harmonic oscillations, Interference Michelson Interferometer No. of Classes: 22	Waves and Optics Wave motion general, Fluids, Sounds, Wave Optics, Diffraction, Polarization
Semester III	PRACTICAL Credit: 2 P3	Thermal Physics and Statistical Lab 1. Verification of Stefan's Law using a torch bulb 2. To determine the Coefficient of Thermal Conductivity of a bad conductor by	Thermal Physics and Statistical Lab 7. Measurement of unknown temperature using Diode sensor. 8. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.	Semester IV	PRACTICAL Credit: 2 P4	Waves and Optics Lab1.To determine the frequency of an electrictuning fork by Melde'sexperiment and verify $\lambda 2$ –T law.2. To determine oefficient of	Waves and Optics Lab 7.To determine dispersive power and resolving power of a plane diffraction grating. 8. To determine the thickness of a thin paper by

	Lee and			Viscosity of	measuring the
	Charlton's disc	9. To determine the		water by Capillary	width of the
	method.	Coefficient of Thermal		Flow	interference
		Conductivity of Cu by		Method (Poiseuille's	fringes
	3. To determine the	Searle's Apparatus.		method).	produced by a
	Temperature				wedge-shaped
	Coefficient of	10. To determine the		3. To determine	Film.
	Resistance by	Coefficient of Thermal		refractive	9.
	Platinum	Conductivity of Cu by		index of the Material	Familiarization
	Resistance	Angstrom's Method.		of a	with: Schuster`s
	Thermometer			prism using sodium	focusing;
	(PRT).using			source.	determination
	constant current				of angle of
	source	No. of Classes: 20		4.To determine the	prism.
	(Subject to the arrival of			dispersive power	10. To
	the instrument)			and	determine
				Cauchy constants of	wavelength of
	4. To study the variation of			the	(1) Na source
	Thermo-Emf of a			material of a prism	and (2) spectral
	Thermocouple with			using	lines of Hg
	Difference of Temperature			mercury source.	source using
	of its Two Junctions.				plane
				5.1° determine	diffraction
	6. To calibrate a			wavelength	grating.
	thermocouple to			of sodium light	11. 10
	measure			using	investigate the
	temperature in a			Fresnel Biprism.	motion of
	specified Range				coupled
	by Null Method			6. To determine	oscillators.
	using a			wavelength of	12.10
	potentiometer.			sodium	determine the
				light using Newton's	wavelength of
	No. of Classes:			Rings.	sodium source
	28				using
				No. of Classes 22	Nilchelson's
				INO. OF Classes: 22	interferometer.
					(Subject to the
					arrival of the
					Instruments)
					NO. OI Classes:
1					50

Semester	Theory	July-Sepember 7 weeks No. of Classes: 28	Oct-December 5 weeks No. Of classes 20	Semester	Theory	Jan-March 5.5 weeks No. of Classes: 22	April-June 7.5 weeks No. of Classes: 30
Sem - V GE T5	Digital Analog Circuits and Instrumentation Credit 4	Digital circuits Semiconductor	Operational Amplifier Instrumentation	Sem - VI GE T7	Solid State Physics Credit 4	Preliminary topics Crystal Structure Lattice Dynamics	Magnetic Properties Dielectric Properties Band Theory Superconductivity
Sem - V GE T6	Perspective of Modern Physics Credit 5+1	Relativity Quantum Mechanics	Atomic Physics Nuclear Physics Xray	Sem - VI GE T8	Nuclear and Particle Physics Credit 5 + 1	General Properties Nuclear Models Radio active Decay Nuclear Reactions	Detectors Particle Accelerators Particle Physics
Sem - V GE P5	Digital Analog Circuits and Instrumentation Lab Credit 2	 To measure (a) Voltage, and (b) Frequency of a periodic waveform using CRO To verify and design AND, OR, NOT and XOR gates using NAND gates. To minimize a given logic circuit. 4. Half adder, Full adder and 4- bit Binary Adder. 5. Adder- 	 6. To design an astable multivibrator of given specifications using 555 Timer. 7. To design a monostable multivibrator of given specifications using 555 Timer. 8. To study IV characteristics of PN diode, Zener and Light emitting diode 9. To study the characteristics of a Transistor in CE configuration 10. To design a CE amplifier of given 	Sem - VI GE P7	Solid State Physics Lab Credit 2	 To determine the Coupling Coefficient of a Piezoelectric crystal. To measure the Dielectric Constant of a dielectric Materials with frequency To study the characteristics of a Ferroelectric Crystal. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis. To measure the resistivity of a semiconductor (Ge) with temperature by reverse bias characteristics of 	 6. To determine the Hall coefficient of a semiconductor sample. 7. To study temperature coefficient of a semiconductor (NTC thermistor) 8. Measurement of susceptibility of paramagnetic solution (Quinck`s Tube Method) 9. To measure the Magnetic susceptibility of solids 10. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon

		Subtractor using	gain (mid-gain)			Ge diode (room	resonance (SPR)
		Full Adder I.C.	using voltage divider			temperature to 80 oC)	11. To determine the
		741 and study its	bias.			and to determine its	refractive index of a
		Frequency	11. To design an			band gap.	dielectric layer using
		Response.	inverting amplifier of				SPR
			given gain using Op-				
		13. To study	amp 741 and study				
		Differential	its frequency				
		Amplifier of	response.				
		given I/O	12. To design a non-				
		specification	inverting amplifier of				
		using Op-amp.	given gain using Op-				
			amp				
		Introduction,					
	Computational	Scientific			Basic	Basic of Instruments,	Impedance bridges and
Sem – III & V	Physics T2	programming,	Programming	Sem – IV & VI	Instrumentation	Electronic Voltmeter,	Q meters. Digital
		Control Statements			Skills T4	Cathode Ray Oscilloscope,	Instruments, Digital
Skilled	(Theory + Lab)			Skilled	(Theory + Lab)	Signal. generators and	multimeters
Enhancement				Enhancement	12 weeks	analysis instruments	
Course – 1	13 weeks	No of Classes:14	No of Classes:10	Course –II		No of Classes:12	No of Classes:16
	Credit 2				Credit 2		