HONOURS	NUMBER	JULY-SEPTEMBER	OCTOBER –	HONOURS	NUMBER	JANUARY-	APRIL-JUNE
(CBCS	OF	7 weeks	DECEMBER	(CBCS	OF	MARCH	7.5 weeks
Syllabus)	LECTURES		5 weeks	Syllabus)	LECTURES	5.5 weeks	
		MATHEMATICAL	MATHEMATICAL	Semester-	THEORY	ELECTRICITY	ELECTRICITY AND
Semester-	THEORY	PHYSICS – I	PHYSICS – I	II	13 weeks	AND	MAGNETISM
I	12 weeks	Calculus, Vector	Calculus, Vector	C -3		MAGNETISM	
C -I		Calculus	Calculus,		Credit: 4		NO. OF CLASSES= 30
	Credit: 4	NO. OF CLASSES= 28	Probability			NO. OF	
			NO. OF CLASSES=			CLASSES= 22	
			20				
Semester –		MECHANICS	MECHANICS	Semester-	THEORY	WAVES AND	WAVES AND OPTICS
I	THEORY			П		OPTICS	
C-2	12 weeks	NO. OF CLASSES=28	NO. OF CLASSES=20	C -4	13 weeks		NO. OF CLASSES= 30
						NO. OF	
	Credit: 4				Credit: 4	CLASSES= 22	
Semester –		MATHEMETICAL PHYSICS	MATHEMETICAL	Semester –	PRACTICAL	1.To determine	6.To study the
I	PRACTICAL	LAB using PYTHON	PHYSICS LAB using	П	13 weeks	an unknown Low	response curve of a
P-I			PYTHON	P-3		Resistance using	parallel LCR circuit and
		NO. OF. CLASSES= 28				Carey Foster's	determine its (a) Anti-
	Credit:2	(subject to the arrival of	NO. OF. CLASSES=		Credit: 2	Bridge.	resonant frequency
		new computer with	20			(subject to arrival	and (b) Quality factor
		given specifications)	(subject to the			of the	Q. (Subject to the arrival
			computer with			2 To verify the	of new instrument)
			given specifications)			Thevenin and	of new instrumenty
			Siven speemeations,			Norton theorems.	7 To study the
						3. To verify the	characteristics
						Superposition	of a series BC Circuit
						and Maximum	
						power transfer	8.To determine an
						theorems.	unknown
						4. To determine	Low Resistance using
						self-inductance of	Potentiometer.

						a coil by Anderson's bridge. 5. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width. (Subject to the arrival o new instrument)	(subject to arrival of the instrument) 9.To determine the resistance of a galvanometer using Thomson's method. (subject to arrival of the instrument) 10.Measurement of field strength B and its variation in a solenoid (determine dB/dx) (subject to arrival of the instrument)
Semester —I P-II	PRACTICAL Credit: 2	 YOUNG'S MODULUS MOMENT OF INERTIA COEFFICIENT OF VISCOSITY MODULUS OF RIGIDITY TO STUDY RANDOM ERROR 	8. To determine the elastic Constants of a wire by Searle's method (Subject to arrival of the instrument)	Semester – I P-4	PRACTICAL 13 weeks Credit: 2	To determine the frequency of an electric tuning fork by Melde's experiment and verify λ ₂ -T law. (Subject to arrival of the instrument)	To study Lissajous Figures to derermine the phase difference between two harmonicoscillatiions. (Subject to arrival of the Instrument)
		(Subject to arrival of the instrument) 6. TO DETERMINE 'g'AND VELOCITY OF A FREELY	9. To determine the value of g using Bar Pendulum.			2. To determine refractive index of the Material of a prism using sodium source.	8. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-

	(Subject to		3 To determine	shaped
	arrival of the		the dispersive	Film (Subject to
TECHNIQUE	instrument)		ne uispeisive	Film. (Subject to
(Subject to arrival	instrumenty		Couchy constants	arrival of the Instrument)
of the instrument)	10 To		Cauchy constants	of theinstrument)
of the instrumenty	10. 10		of the material of	
7 TO DETERMINE	determine		a prism using	
	the value		mercury source.	
	of g using		(subject to the	9. Familiarization with:
SEXTANT	Kater's		arrival of Hg	Schuster`s focusing;
(Subject to arrival of the	Pendulum		source)	determination of angle
(subject to unital of the	(Subject to			of
listiuncity	arrival of the		4. To determine	prism.
	instrument)		wavelength of	
	(Subject to		sodium light	
	arrival of the		using Fresnel	10. To determine
	instrument)		Biprism.	wavelength
				of (1) Na source and
	11. To study		5. To determine	(2) spectral lines of Hg
	the Motion		wavelength of	source using plane
NO. OF CLASSES=28	of Spring		sodium light	diffraction grating.
	and		using Newton's	(subject to arrival of
	calculate		Rings.	the
			c	Hg. source)
	(a) Spring		6. To determine	<i>o</i> ,
	constant,		dispersive power	
	(b) g and		and resolving	11.To investigate the
	(c)		power of a plane	motion of coupled
	Modulus of		diffraction	oscillators.
	rigidity.		orating	(Subject to arrival
	(Subject to		grunng.	of the Instrument)
	arrival of the			of themstrument)
	instrument			
			NO. OF CLASSES	12 To determine the
	NO. OF		= 22	wavelength of sodium
				source using
				Michalson's
				interforemeter
				Interferometer.
				(Subject to arrival
				of theinstrument)

PART -II	THEORY	UNIT IIIA, GROUP A ELECTRICITY I	UNIT IIIB, GROUP B ELECTRICITY II		UNIT IIIB, GROUP D ELECTRONICS	NO. OF. CLASSES = 30
PAPER -III		NO. OF CLASSES= 15	NO. OF CLASSES= 12		NO. OF CLASSES= 12	
PAPER -III	THEORY	UNIT IVA, GROUP B Electromagnetic Theory NO. OF CLASSES=8	UNIT IIIB, GROUP C Electromagnetic Theory NO. OF CLASSES=6		Electromagnetic Theory NO. OF CLASSES=6 Electricity II NO. OF. CLASSES=10	ELECTRONICS NO. OF CLASSES= 20 Electromagnetic Theory NO. OF CLASSES=6
PART -II PAPER -IVA	THEORY	PHYSICAL OPTICS NO. OF CLASSES=15 Ray Optics NO. OF CLASSES=7	PHYSICAL OPTICS NO. OF CLASSES=10 Ray Optics NO. OF CLASSES=6		UNIT IVA, GROUP A Ray Optics NO. OF CLASSES=6	Ray Optics NO. OF CLASSES=6
PART -II PAPER - IVB	Practical	MUTUAL INDUCTANCE LCR , VERIFICATION OF THEVENIN, NORTON AND MAXIMUM POWER TRANSFER THEOREM NO. OF CLASSES= 28	VERIFICATION OF LOGIC GATES AND DE MORGAN'S THEOREMS ZENER DIODE NO. OF CLASSES= 20		BRIDGE RECTIFIER ZENER DIODE TRANSISTOR IN CE AND CB MODE NO. OF CLASSES= 12	POLARIMETER NEWTON'S RINGS DOUBLE SLIT NO. OF CLASSES= 16

HONOURS	NUMBER OF LECTURES	JULY-SEPTEMBER	OCTOBER -DECEMBER	JANUARY-MARCH	TIO	APRIL- JUNE	
PART -III PAPER -V	THEORY	UNIT VB, GROUP D QUANTUM MECHANICS NO. OF CLASSES= 21	UNIT VB, GROUP D QUANTUM MECHANICS NO. OF CLASSES= 18	UNIT VB, GROUP E SPECTROSCOPY NO. OF CLASSES= 6	TEST		TUTORIAL ()

				UNIT VA, GROUP A CLASSICAL MECHANICS	AND UNIVERSITY FINAL
				NO. OF CLASSES= 20	EXAMINATION
		UNIT VA, GROUP B	UNIT VB, GROUP E		
		SPECIAL THEORY OF	SPECTROSCOPY		
		RELATIVITY	NO. OF CLASSES= 10		
		NO. OF CLASSES= 14			
		UNIT VA, GROUP C			
		STATISTICAL PHYSICS			
		NO. OF CLASSES= 14			
			UNIT VB, GROUP E		
			X-Ray= 5		
PART -III	THEORY	UNIT VIA, GROUP A	UNIT VIA, GROUP A	UNIT VIB, GROUP C	
PAPER -VI		NUCLEAR PHYSICS	NUCLEAR PHYSICS	SOLID STATE	
		NO. OF CLASSES=28	NO. OF CLASSES=20	PHYSICS	
				NO. OF CLASSES= 18	
		UNIT VIA, GROUP D	UNIT VIA, GROUP B		
		LASER AND FIBRE OPTICS	INSTRUMENTAL METHOD		
		NO. OF CLASSES= 7	NO. OF CLASSES=5		
PART -III	THEORY		UNIT VIIA	UNIT VIIA	
PAPER -			ELECTRONICS	ELECTRONICS	
VIIA			NO. OF CLASSES= 12	NO. OF CLASSES= 12	
PART -III		COMPUTER	COMPUTER	COMPUTER	
PAPER -	Practical	PROGRAMMING	PROGRAMMING	PROGRAMMING	
VIIB		NO. OF CLASSES= 14	NO. OF CLASSES= 16	NO. OF CLASSES= 10	
			1		

HONOURS	NUMBER OF LECTURES	JULY-SEPTEMBER	OCTOBER -DECEMBER	JANUARY-MARCH	L.	APRIL- JUNE
PART -III PAPER -	Practical	BIPRISM POLAROID GRATING	B-H LOOP (SUBJECT TO ARRIVAL OF THE INSTRUENT)	BAND GAP CROSSED GRATING NO. OF CLASSES= 10	TEST	

VIIIA	NO. OF CLASSES=14	ANDERSON BRIDGE FOURIER SPECTRUM NO. OF CLASSES=14			UNIVERSITY FINAL EXAMINATION
PART -III PAPER - VIIIB	VOLTAGE AMPLIFIER WIEN BRIDGE OSCILLATOR TEMPERATURE CONTROLLER NO. OF CLASSES=14	TRANSISTOR CHARACTERISTICS OP-AMP BOOLEAN EXPRESSION NO. OF CLASSES=14	REGULATED POWER SUPPLY H Parameters NO. OF CLASSES =10		

GENERAL	NUMBER OF LECTURES	JULY-SEPTEMBER Particle Dynamics STR Mathematical methods Elasticity NO. OF CLASS = 28	OCTOBER – DECEMBER Particle Dynamics STR Oscillations Gravitation NO. OF CLASS = 20	JANUARY-MARCH Vector Analysis Electrostatics Electromegnetic Induction NO. OF CLASS = 24	NO	APRIL-JUNE Linear Network Maxwells Equations Wave Propagation Magnetic Induction NO. OF CLASSES= 32	UNIVERSITY FINAL EXAMINATION
	PRACTICAL	1.MODULUS OF RIGIDITY 2.MOMENT OF INERTIA 3.COEFFICIENT OF VISCOSITY 4.YOUNG'S MODULUS 5.To study the random error in observations of time period of some oscillation using chronometer.	 6.To determine the height of a building using a Sextant. 7. To determine the elastic Constants of a wire by Searle's method. 8.To determine the value of g using Bar Pendulum. 9. To determine the 	To determine an unknown Low Resistance using Carey Foster's Bridge. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 2. To verify the Thevenin and Norton theorems. 3. To verify the Superposition and Maximum power transfer	TEST EXAMINATI	6.To study the response curve of a parallel LCR circuit and determine its (a) Anti- resonant frequency and (b) Quality factor Q. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 7. To study the characteristics of a series RC Circuit. 8. To determine an unknown Low	

		(SUBJECT TO ARRIVAL OF THE INSTRUMENT NO. OF CLASSES=28	value of g using Kater's Pendulum. To study the Motion of Spring and calculate, (a) Spring constant, (b) g and (c) Modulus of rigidity (SUBJECT TO ARRIVAL OF THE INSTRUMENT) NO. OF CLASSES=20	theorems. 4. To determine self-inductance of a coil by Anderson's bridge. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 5. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance , (c) Quality factor Q, and (d) Band width. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) No. of Classes = 24	Resistance using Potentiometer. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 9. To determine the resistance of a galvanometer using Thomson's method. (SUBJECT TO ARRIVAL OF THE INSTRUMENT) 10. Measurement of field strength B and its variation in a solenoid (determine dB/dx) (SUBJECT TO ARRIVAL OF THE INSTRUMENT) NO. OF CLASS = 32	
PART II PAPER II	THEORY	GROUP A GEOMETRICAL OPTICS GROUP B PHYSICAL OPTICS NO. OF CLASSES=14	GROUP C ELECTRICITY NO. OF CLASSES=14	GROUP D ELECTRONICS NO. OF CLASSES=14	GROUP E MODERN PHYSICS NO. OF CLASSES=14	
Paper III,	PRACTICAL	YOUNG'S MODULUS COEFFICIENT OF VISCOSITY SURFACE TENSION	REFRACTIVE INDEX OF THE MATERIAL OF A PRISM NEWTON'S RINGS	CONCENTRATION OF SUGAR SOLUTION USINGPOLARIME- TER TEMPERATURE	E-T CURVE OF A THERMOCOUPLE NO. OF CLASSES=	

Group	NO. OF CLASSES=	NO. OF CLASSES=	COEFFICI- ENT OF THE		
B			MATERIAL OF A COIL		
_			USING CAREY-FOSTER		
			BRIDGE.		
			NO. OF CLASSES=		

GENERAL	NUMBER	JULY-SEPTEMBER	OCTOBER -	JANUARY-MARCH		APRIL-JUNE	
I	LECTURES		DECEMBER				
PART -III PAPER –	THEORY	PRODUCTION AND MEASUREMENT OF HIGH VACUUM	ELECTRONICS NO. OF CLASSES=14	COMMUNICATIONS AND TRANSMISSION OF E-M WAVE		COMPUTER PROGRAMMING TUTORIAL CLASSES ON	
70 MARKS		ENERGY SOURCES NO. OF CLASSES=14		NO. OF CLASSES=14	lion	PROGRAMMING NO. OF CLASSES=14	UNIVERSITY FINAL
PAPER – IV 30 MARKS	PRACTICAL	1. CONVERSION OF AMMETER TO VOLTMETER AND VICE VERSA 2. TO CONSTRUCT AN ADJUSTABLE VOLTAGE POWER SOURCE NO. OF CLASSES=28	3. INCREASE OF INTERNAL RESISTANCE OF AN ANALOG VOLTMETER BY USING OPAMP 4. USE OF OPAMP AS INVERTING, NON INVERTING, DIFFERENTIAL AMPLIFIER AND ADDER	TO CALIBRATE A GIVEN TEMPERATURE SENSOR AND USE THE SENSOR TO DEVELOP A PHOTOSENSOR AND USE OF IT NO. OF CLASSES=24	TEST EXAMINAT	TO FAMILIARISE WITH THE OPERATING SYSTEM AND TO SOLVE SIMPLE PROBLEMS BY PROGRAMMING IN C OR FORTRAN NO. OF CLASSES=32	EXAMINATION